Loading [MathJax]/extensions/MathMenu.js
We give new necessary and sufficient conditions for an element of a C*-algebra to commute with its Moore-Penrose inverse. We then study conditions which ensure that this property is preserved under multiplication. As a special case of our results we recover a recent theorem of Hartwig and Katz on EP matrices.
Cauchy problem, boundary value problems with a boundary value condition and Sturm-Liouville problems related to the operator differential equation are studied for the general case, even when the algebraic equation is unsolvable. Explicit expressions for the solutions in terms of data problem are given and computable expressions of the solutions for the finite-dimensional case are made available.
It is shown that a finite system T of matrices whose real linear combinations have real spectrum satisfies a bound of the form . The proof appeals to the monogenic functional calculus.
The present paper is mainly concerned with equations involving exponentials of bounded normal operators. Conditions implying commutativity of normal operators are given, without using the known 2πi-congruence-free hypothesis. This is a continuation of a recent work by the second author.
We present a new approach to the question of when the commutativity of operator exponentials implies that of the operators. This is proved in the setting of bounded normal operators on a complex Hilbert space. The proofs are based on some results on similarities by Berberian and Embry as well as the celebrated Fuglede theorem.
Currently displaying 1 –
9 of
9