Means and Concave Products of Positive Semi-Definite Matrices.
Questa è una rassegna di alcuni risultati recenti sui moltiplicatori spettrali dell'operatore di Ornstein-Uhlenbeck, un laplaciano naturale sullo spazio euclideo munito della misura gaussiana. I risultati sono inquadrati nell'ambito della teoria generale dei moltiplicatori spettrali per laplaciani generalizzati.
We obtain a sufficient condition on a B(H)-valued function φ for the operator to be completely bounded on ; the Foiaş-Williams-Peller operator | St Γφ | Rφ = | | | 0 S | is then similar to a contraction. We show that if ⨍ : D → B(H) is a bounded analytic function for which and are Carleson measures, then ⨍ multiplies to itself. Such ⨍ form an algebra A, and when φ’∈ BMO(B(H)), the map is bounded . Thus we construct a functional calculus for operators of Foiaş-Williams-Peller type.
Multivariate spectral multipliers for systems of Ornstein-Uhlenbeck operators are studied. We prove that -uniform, 1 < p < ∞, spectral multipliers extend to holomorphic functions in some subset of a polysector, depending on p. We also characterize L¹-uniform spectral multipliers and prove a Marcinkiewicz-type multiplier theorem. In the appendix we obtain analogous results for systems of Laguerre operators.