Identity of Taylor's joint spectrum and Dash's joint spectrum
In this paper integral formulae, based on Taylor's functional calculus for several operators, are found. Special cases of these formulae include those of Vasilescu and Janas, and an integral formula for commuting operators with real spectra.
Soit une transformée de Stieltjes. Notant un prolongement de la fonction à , on définit, pour tout espace de Banach et pour tout opérateur sur qui soit de domaine dense, fermé, d’ensemble résolvant contenant et qui vérifie , un opérateur qui est un opérateur sur de même nature que . On montre que l’on a (où désigne le spectre étendu). En outre, l’opération a d’excellentes propriétés de stabilité. En particulier, si et si est un potentiel abstrait, est un potentiel...
Suppose A is an injective linear operator on a Banach space that generates a uniformly bounded strongly continuous semigroup . It is shown that generates an -regularized semigroup. Several equivalences for generating a strongly continuous semigroup are given. These are used to generate sufficient conditions on the growth of , on subspaces, for generating a strongly continuous semigroup, and to show that the inverse of -d/dx on the closure of its image in L¹([0,∞)) does not generate a strongly...