Previous Page 5

Displaying 81 – 92 of 92

Showing per page

Submultiplicative functions and operator inequalities

Hermann König, Vitali Milman (2014)

Studia Mathematica

Let T: C¹(ℝ) → C(ℝ) be an operator satisfying the “chain rule inequality” T(f∘g) ≤ (Tf)∘g⋅Tg, f,g ∈ C¹(ℝ). Imposing a weak continuity and a non-degeneracy condition on T, we determine the form of all maps T satisfying this inequality together with T(-Id)(0) < 0. They have the form Tf = ⎧ ( H f / H ) f ' p , f’ ≥ 0, ⎨ ⎩ - A ( H f / H ) | f ' | p , f’ < 0, with p > 0, H ∈ C(ℝ), A ≥ 1. For A = 1, these are just the solutions of the chain rule operator equation. To prove this, we characterize the submultiplicative, measurable functions...

The minimal operator and the John--Nirenberg theorem for weighted grand Lebesgue spaces

Lihua Peng, Yong Jiao (2015)

Studia Mathematica

We introduce the minimal operator on weighted grand Lebesgue spaces, discuss some weighted norm inequalities and characterize the conditions under which the inequalities hold. We also prove that the John-Nirenberg inequalities in the framework of weighted grand Lebesgue spaces are valid provided that the weight function belongs to the Muckenhoupt A p class.

Young's (in)equality for compact operators

Gabriel Larotonda (2016)

Studia Mathematica

If a,b are n × n matrices, T. Ando proved that Young’s inequality is valid for their singular values: if p > 1 and 1/p + 1/q = 1, then λ k ( | a b * | ) λ k ( 1 / p | a | p + 1 / q | b | q ) for all k. Later, this result was extended to the singular values of a pair of compact operators acting on a Hilbert space by J. Erlijman, D. R. Farenick and R. Zeng. In this paper we prove that if a,b are compact operators, then equality holds in Young’s inequality if and only if | a | p = | b | q .

Currently displaying 81 – 92 of 92

Previous Page 5