A note on strictly cyclic shifts on .
An example of a nonzero quasinilpotent operator with reflexive commutant is presented.
A new example of a non-zero quasi-nilpotent operator T with reflexive commutant is presented. The norms converge to zero arbitrarily fast.
Let T be a spherical 2-expansive m-tuple and let denote its spherical Cauchy dual. If is commuting then the inequality holds for every positive integer k. In case m = 1, this reveals the rather curious fact that all positive integral powers of the Cauchy dual of a 2-expansive (or concave) operator are hyponormal.