The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent

Yannick Privat, Mario Sigalotti (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with the genericity of domain-dependent spectral properties of the Laplacian-Dirichlet operator. In particular we prove that, generically, the squares of the eigenfunctions form a free family. We also show that the spectrum is generically non-resonant. The results are obtained by applying global perturbations of the domains and exploiting analytic perturbation properties. The work is motivated by two applications: an existence result for the problem of maximizing the rate of...

The Weyl asymptotic formula by the method of Tulovskiĭ and Shubin

Paweł Głowacki (1998)

Studia Mathematica

Let A be a pseudodifferential operator on N whose Weyl symbol a is a strictly positive smooth function on W = N × N such that | α a | C α a 1 - ϱ for some ϱ>0 and all |α|>0, α a is bounded for large |α|, and l i m w a ( w ) = . Such an operator A is essentially selfadjoint, bounded from below, and its spectrum is discrete. The remainder term in the Weyl asymptotic formula for the distribution of the eigenvalues of A is estimated. This is done by applying the method of approximate spectral projectors of Tulovskiĭ and Shubin.

Currently displaying 1 – 5 of 5

Page 1