Page 1

Displaying 1 – 10 of 10

Showing per page

Some new problems in spectral optimization

Giuseppe Buttazzo, Bozhidar Velichkov (2014)

Banach Center Publications

We present some new problems in spectral optimization. The first one consists in determining the best domain for the Dirichlet energy (or for the first eigenvalue) of the metric Laplacian, and we consider in particular Riemannian or Finsler manifolds, Carnot-Carathéodory spaces, Gaussian spaces. The second one deals with the optimal shape of a graph when the minimization cost is of spectral type. The third one is the optimization problem for a Schrödinger potential in suitable classes.

Spectral analysis in a thin domain with periodically oscillating characteristics

Rita Ferreira, Luísa M. Mascarenhas, Andrey Piatnitski (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with a Dirichlet spectral problem for an elliptic operator with ε-periodic coefficients in a 3D bounded domain of small thickness δ. We study the asymptotic behavior of the spectrum as ε and δ tend to zero. This asymptotic behavior depends crucially on whether ε and δ are of the same order (δ ≈ ε), or ε is much less than δ(δ = ετ, τ < 1), or ε is much greater than δ(δ = ετ, τ > 1). We consider all three cases.

Spectral analysis in a thin domain with periodically oscillating characteristics

Rita Ferreira, Luísa M. Mascarenhas, Andrey Piatnitski (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with a Dirichlet spectral problem for an elliptic operator with ε-periodic coefficients in a 3D bounded domain of small thickness δ. We study the asymptotic behavior of the spectrum as ε and δ tend to zero. This asymptotic behavior depends crucially on whether ε and δ are of the same order (δ ≈ ε), or ε is much less than δ(δ = ετ, τ < 1), or ε is much greater than δ(δ = ετ, τ > 1). ...

Symmetrization of functions and principal eigenvalues of elliptic operators

François Hamel, Nikolai Nadirashvili, Emmanuel Russ (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

In this paper, we consider shape optimization problems for the principal eigenvalues of second order uniformly elliptic operators in bounded domains of n . We first recall the classical Rayleigh-Faber-Krahn problem, that is the minimization of the principal eigenvalue of the Dirichlet Laplacian in a domain with fixed Lebesgue measure. We then consider the case of the Laplacian with a bounded drift, that is the operator - Δ + v · , for which the minimization problem is still well posed. Next, we deal with...

Currently displaying 1 – 10 of 10

Page 1