Page 1 Next

Displaying 1 – 20 of 82

Showing per page

Factoring Rosenthal operators.

Teresa Alvarez (1988)

Publicacions Matemàtiques

In this paper we show that a Rosenthal operator factors through a Banach space containing no isomorphs of l1.

Factorization of operators on C*-algebras

Narcisse Randrianantoanina (1998)

Studia Mathematica

Let A be a C*-algebra. We prove that every absolutely summing operator from A into 2 factors through a Hilbert space operator that belongs to the 4-Schatten-von Neumann class. We also provide finite-dimensional examples that show that one cannot replace the 4-Schatten-von Neumann class by the p-Schatten-von Neumann class for any p < 4. As an application, we show that there exists a modulus of capacity ε → N(ε) so that if A is a C*-algebra and T Π 1 ( A , 2 ) with π 1 ( T ) 1 , then for every ε >0, the ε-capacity of...

Factorization of rational matrix functions and difference equations

J.S. Rodríguez, L.F. Campos (2013)

Concrete Operators

In the beginning of the twentieth century, Plemelj introduced the notion of factorization of matrix functions. The matrix factorization finds applications in many fields such as in the diffraction theory, in the theory of differential equations and in the theory of singular integral operators. However, the explicit formulas for the factors of the factorization are known only in a few classes of matrices. In the present paper we consider a new approach to obtain the factorization of a rational matrix...

Factorization of unbounded operators on Köthe spaces

T. Terzioğlu, M. Yurdakul, V. Zahariuta (2004)

Studia Mathematica

The main result is that the existence of an unbounded continuous linear operator T between Köthe spaces λ(A) and λ(C) which factors through a third Köthe space λ(B) causes the existence of an unbounded continuous quasidiagonal operator from λ(A) into λ(C) factoring through λ(B) as a product of two continuous quasidiagonal operators. This fact is a factorized analogue of the Dragilev theorem [3, 6, 7, 2] about the quasidiagonal characterization of the relation (λ(A),λ(B)) ∈ ℬ (which means that all...

Factorization theorem for 1 -summing operators

Irene Ferrando (2011)

Czechoslovak Mathematical Journal

We study some classes of summing operators between spaces of integrable functions with respect to a vector measure in order to prove a factorization theorem for 1 -summing operators between Banach spaces.

Factorization through Hilbert space and the dilation of L(X,Y)-valued measures

V. Mandrekar, P. Richard (1993)

Studia Mathematica

We present a general necessary and sufficient algebraic condition for the spectral dilation of a finitely additive L(X,Y)-valued measure of finite semivariation when X and Y are Banach spaces. Using our condition we derive the main results of Rosenberg, Makagon and Salehi, and Miamee without the assumption that X and/or Y are Hilbert spaces. In addition we relate the dilation problem to the problem of factoring a family of operators through a single Hilbert space.

Currently displaying 1 – 20 of 82

Page 1 Next