Page 1 Next

Displaying 1 – 20 of 95

Showing per page

Ideal norms and trigonometric orthonormal systems

Jörg Wenzel (1994)

Studia Mathematica

We characterize the UMD-property of a Banach space X by sequences of ideal norms associated with trigonometric orthonormal systems. The asymptotic behavior of those numerical parameters can be used to decide whether X is a UMD-space. Moreover, if this is not the case, we obtain a measure that shows how far X is from being a UMD-space. The main result is that all described sequences are not only simultaneously bounded but are also asymptotically equivalent.

Idéaux fermés de certaines algèbres de Beurling et application aux opérateurs à spectre dénombrable

Cyril Agrafeuil (2005)

Studia Mathematica

We denote by the unit circle and by the unit disc of ℂ. Let s be a non-negative real and ω a weight such that ω ( n ) = ( 1 + n ) s (n ≥ 0) and the sequence ( ω ( - n ) / ( 1 + n ) s ) n 0 is non-decreasing. We define the Banach algebra A ω ( ) = f ( ) : | | f | | ω = n = - + | f ̂ ( n ) | ω ( n ) < + . If I is a closed ideal of A ω ( ) , we set h ( I ) = z : f ( z ) = 0 ( f I ) . We describe all closed ideals I of A ω ( ) such that h⁰(I) is at most countable. A similar result is obtained for closed ideals of the algebra A s ( ) = f A ω ( ) : f ̂ ( n ) = 0 ( n < 0 ) without inner factor. Then we use this description to establish a link between operators with countable spectrum and interpolating sets...

Identification problems for degenerate parabolic equations

Fadi Awawdeh, Hamed M. Obiedat (2013)

Applications of Mathematics

This paper deals with multivalued identification problems for parabolic equations. The problem consists of recovering a source term from the knowledge of an additional observation of the solution by exploiting some accessible measurements. Semigroup approach and perturbation theory for linear operators are used to treat the solvability in the strong sense of the problem. As an important application we derive the corresponding existence, uniqueness, and continuous dependence results for different...

Improved Heinz inequalities via the Jensen functional

Mario Krnić, Josip Pečarić (2013)

Open Mathematics

By virtue of convexity of Heinz means, in this paper we derive several refinements of Heinz norm inequalities with the help of the Jensen functional and its properties. In addition, we discuss another approach to Heinz operator means which is more convenient for obtaining the corresponding operator inequalities for positive invertible operators.

Improving the convergence of iterative methods

Jan Zítko (1983)

Aplikace matematiky

The author considers the operator equation x = T x + b . Methods for acceleration of convergence of the iterative process x n + 1 ) = T x n + b are investigated.

In a shadow of the RH: Cyclic vectors of Hardy spaces on the Hilbert multidisc

Nikolai Nikolski (2012)

Annales de l’institut Fourier

Completeness of a dilation system ( ϕ ( n x ) ) n 1 on the standard Lebesgue space L 2 ( 0 , 1 ) is considered for 2-periodic functions ϕ . We show that the problem is equivalent to an open question on cyclic vectors of the Hardy space H 2 ( 𝔻 2 ) on the Hilbert multidisc 𝔻 2 . Several simple sufficient conditions are exhibited, which include however practically all previously known results (Wintner; Kozlov; Neuwirth, Ginsberg, and Newman; Hedenmalm, Lindquist, and Seip). For instance, each of the following conditions implies cyclicity...

In search of the invisible spectrum

Nikolai Nikolski (1999)

Annales de l'institut Fourier

In this paper, we begin the study of the phenomenon of the “invisible spectrum” for commutative Banach algebras. Function algebras, formal power series and operator algebras will be considered. A quantitative treatment of the famous Wiener-Pitt-Sreider phenomenon for measure algebras on locally compact abelian (LCA) groups is given. Also, our approach includes efficient sharp estimates for resolvents and solutions of higher Bezout equations in terms of their spectral bounds. The smallest “spectral...

Including eigenvalues of the plane Orr-Sommerfeld problem

Peter P. Klein (1993)

Applications of Mathematics

In an earlier paper [5] a method for eigenvalue inclussion using a Gerschgorin type theory originating from Donnelly [2] was applied to the plane Orr-Sommerfeld problem in the case of a pure Poiseuile flow. In this paper the same method will be used to deal Poiseuile and Couette flow. Potter [6] has treated this case before with an approximative method.

Increasing sequences of sectorial forms

Hendrik Vogt, Jürgen Voigt (2020)

Czechoslovak Mathematical Journal

We prove convergence results for `increasing' sequences of sectorial forms. We treat both the case of closed forms and the case of non-closable forms.

Inégalités de résolvante pour l’opérateur de Schrödinger avec potentiel multipolaire critique

Thomas Duyckaerts (2006)

Bulletin de la Société Mathématique de France

On étudie un opérateur de la forme - Δ + V sur d , où V est un potentiel admettant plusieurs pôles en a / r 2 . Plus précisément, on démontre l’estimation de résolvante tronquée à hautes fréquences, classique dans les cas non-captifs, et qui implique l’effet régularisant standard pour l’équation de Schrödinger correspondante. La preuve est basée sur l’introduction d’une mesure de défaut micro-locale semi-classique. On démontre également, dans le même contexte, des inégalités de Strichartz pour l’équation de Schrödinger....

Currently displaying 1 – 20 of 95

Page 1 Next