The search session has expired. Please query the service again.

Previous Page 19

Displaying 361 – 367 of 367

Showing per page

Automatic extensions of functional calculi

Ralph deLaubenfels (1995)

Studia Mathematica

Given a Banach algebra ℱ of complex-valued functions and a closed, linear (possibly unbounded) densely defined operator A, on a Banach space, with an ℱ functional calculus we present two ways of extending this functional calculus to a much larger class of functions with little or no growth conditions. We apply this to spectral operators of scalar type, generators of bounded strongly continuous groups and operators whose resolvent set contains a half-line. For f in this larger class, one construction...

Averages of unitary representations and weak mixing of random walks

Michael Lin, Rainer Wittmann (1995)

Studia Mathematica

Let S be a locally compact (σ-compact) group or semigroup, and let T(t) be a continuous representation of S by contractions in a Banach space X. For a regular probability μ on S, we study the convergence of the powers of the μ-average Ux = ʃ T(t)xdμ(t). Our main results for random walks on a group G are: (i) The following are equivalent for an adapted regular probability on G: μ is strictly aperiodic; U n converges weakly for every continuous unitary representation of G; U is weakly mixing for any...

Averaging theorems for linear operators in compact groups and semigroups

G. Murphy, T. West (1997)

Studia Mathematica

The Weyl criterion for uniform distribution of a sequence has an especially simple form in compact abelian groups. The authors use this and the structure of compact monothetic groups and semigroups to generalise the convergence, under certain compactness conditions, of the operator averages: n - 1 k = 1 n T k P ( n ) where P is a projection associated with the eigenvalue one of T.

a-Weyl's theorem and perturbations

Mourad Oudghiri (2006)

Studia Mathematica

We study the stability of a-Weyl's theorem under perturbations by operators in some known classes. We establish in particular that if T is a finite a-isoloid operator, then a-Weyl's theorem is transmitted from T to T + R for every Riesz operator R commuting with T.

a-Weyl's theorem and the single valued extension property.

Mourad Oudghiri (2006)

Extracta Mathematicae

In the present paper, we study a-Weyl's and a-Browder's theorem for an operator T such that T or T* satisfies the single valued extension property (SVEP). We establish that if T* has the SVEP, then T obeys a-Weyl's theorem if and only if it obeys Weyl's theorem. Further, if T or T* has the SVEP, we show that the spectral mapping theorem holds for the essential approximative point spectrum, and that a-Browder's theorem is satisfied by f(T) whenever f ∈ H(σ(T)). We also provide several conditions...

Axiomatic theory of spectrum III: semiregularities

Vladimír Müller (2000)

Studia Mathematica

We introduce and study the notions of upper and lower semiregularities in Banach algebras. These notions generalize the previously studied notion of regularity - a class is a regularity if and only if it is both upper and lower semiregularity. Each semiregularity defines in a natural way a spectrum which satisfies a one-way spectral mapping property (the spectrum defined by a regularity satisfies the both-ways spectral mapping property).

Currently displaying 361 – 367 of 367

Previous Page 19