On the spectrum of a one-parameter strongly continous representation.
We extend the Killeen-Taylor study [Nonlinearity 13 (2000)] by investigating in different Banach spaces (,c₀(ℕ),c(ℕ)) the point, continuous and residual spectra of stochastic perturbations of the shift operator associated to the stochastic adding machine in base 2 and in the Fibonacci base. For the base 2, the spectra are connected to the Julia set of a quadratic map. In the Fibonacci case, the spectrum is related to the Julia set of an endomorphism of ℂ².
Let ϕ: [0,1] → [0,1] be a nondecreasing continuous function such that ϕ(x) > x for all x ∈ (0,1). Let the operator be defined on L₂[0,1]. We prove that has a finite number of nonzero eigenvalues if and only if ϕ(0) > 0 and ϕ(1-ε) = 1 for some 0 < ε < 1. Also, we show that the spectral trace of the operator always equals 1.
We give a Martinelli-Vasilescu type formula for the Taylor functional calculus and a simple proof of its basic properties.
It is well-known that the topological boundary of the spectrum of an operator is contained in the approximate point spectrum. We show that the one-sided version of this result is not true. This gives also a negative answer to a problem of Schmoeger.
In this paper, we prove sufficient conditions on pairs of weights (u,v) (scalar, matrix or operator valued) so that the Hilbert transform H f(x) = p.v. ∫ [f(y) / x - y] dy,is bounded from L2(u) to L2(v).
Let T be a power-bounded linear operator in a real Banach space X. We study the equality (*) . For X separable, we show that if T satisfies and is not uniformly ergodic, then contains an isomorphic copy of an infinite-dimensional dual Banach space. Consequently, if X is separable and does not contain isomorphic copies of infinite-dimensional dual Banach spaces, then (*) is equivalent to uniform ergodicity. As an application, sufficient conditions for uniform ergodicity of irreducible Markov chains...
We study a new class of bounded linear operators which strictly contains the class of bounded linear operators with the decomposition property (δ) or the weak spectral decomposition property (weak-SDP). We treat general local spectral properties for operators in this class and compare them with the case of operators with (δ).