The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 461 – 480 of 502

Showing per page

Operator equations and subscalarity

Sungeun Jung, Eungil Ko (2014)

Studia Mathematica

We consider the system of operator equations ABA = A² and BAB = B². Let (A,B) be a solution to this system. We give several connections among the operators A, B, AB, and BA. We first prove that A is subscalar of finite order if and only if B is, which is equivalent to the subscalarity of AB or BA with finite order. As a corollary, if A is subscalar and its spectrum has nonempty interior, then B has a nontrivial invariant subspace. We also provide examples of subscalar operator matrices. Moreover,...

Operator fractional-linear transformations: convexity and compactness of image; applications

V. Khatskevich, V. Shul'Man (1995)

Studia Mathematica

The present paper consists of two parts. In Section 1 we consider fractional-linear transformations (f.-l.t. for brevity) F in the space ( X 1 , X 2 ) of all linear bounded operators acting from X 1 into X 2 , where X 1 , X 2 are Banach spaces. We show that in the case of Hilbert spaces X 1 , X 2 the image F(ℬ) of any (open or closed) ball ℬ ⊂ D(F) is convex, and if ℬ is closed, then F(ℬ) is compact in the weak operator topology (w.o.t.) (Theorem 1.2). These results extend the corresponding results on compactness obtained in [3],...

Operator inequalities of Jensen type

M. S. Moslehian, J. Mićić, M. Kian (2013)

Topological Algebra and its Applications

We present some generalized Jensen type operator inequalities involving sequences of self-adjoint operators. Among other things, we prove that if f : [0;1) → ℝ is a continuous convex function with f(0) ≤ 0, then [...] for all operators Ci such that [...] (i=1 , ... , n) for some scalar M ≥ 0, where [...] and [...]

Operator Lipschitz functions on Banach spaces

Jan Rozendaal, Fedor Sukochev, Anna Tomskova (2016)

Studia Mathematica

Let X, Y be Banach spaces and let (X,Y) be the space of bounded linear operators from X to Y. We develop the theory of double operator integrals on (X,Y) and apply this theory to obtain commutator estimates of the form | | f ( B ) S - S f ( A ) | | ( X , Y ) c o n s t | | B S - S A | | ( X , Y ) for a large class of functions f, where A ∈ (X), B ∈ (Y) are scalar type operators and S ∈ (X,Y). In particular, we establish this estimate for f(t): = |t| and for diagonalizable operators on X = p and Y = q for p < q. We also study the estimate above in the setting of Banach ideals...

Operator matrix of Moore-Penrose inverse operators on Hilbert C*-modules

Mehdi Mohammadzadeh Karizaki, Mahmoud Hassani, Maryam Amyari, Maryam Khosravi (2015)

Colloquium Mathematicae

We show that the Moore-Penrose inverse of an operator T is idempotent if and only if it is a product of two projections. Furthermore, if P and Q are two projections, we find a relation between the entries of the associated operator matrix of PQ and the entries of associated operator matrix of the Moore-Penrose inverse of PQ in a certain orthogonal decomposition of Hilbert C*-modules.

Operator positivity and analytic models of commuting tuples of operators

Monojit Bhattacharjee, Jaydeb Sarkar (2016)

Studia Mathematica

We study analytic models of operators of class C · 0 with natural positivity assumptions. In particular, we prove that for an m-hypercontraction T C · 0 on a Hilbert space , there exist Hilbert spaces and ⁎ and a partially isometric multiplier θ ∈ ℳ (H²(),A²ₘ(⁎)) such that θ = A ² ( ) θ H ² ( ) and T P θ M z | θ , where A²ₘ(⁎) is the ⁎-valued weighted Bergman space and H²() is the -valued Hardy space over the unit disc . We then proceed to study analytic models for doubly commuting n-tuples of operators and investigate their applications...

Operator semigroups in Banach space theory

Pietro Aiena, Manuel González, Antonio Martínez-Abejón (2001)

Bollettino dell'Unione Matematica Italiana

In questo lavoro, motivati dalla teoria di Fredholm in spazi di Banach e dalla cosiddetta teoria degli ideali di operatori nel senso di Pietsch, viene definito un nuovo concetto di semigruppo di operatori. Questa nuova definizione include quella di molte classi di operatori già studiate in letteratura, come la classe degli operatori di semi-Fredholm, quella degli operatori tauberiani ed altre ancora. Inoltre permette un nuovo ed unificante approccio ad una serie di problemi in teoria degli operatori...

Operator theoretic properties of semigroups in terms of their generators

S. Blunck, L. Weis (2001)

Studia Mathematica

Let ( T t ) be a C₀ semigroup with generator A on a Banach space X and let be an operator ideal, e.g. the class of compact, Hilbert-Schmidt or trace class operators. We show that the resolvent R(λ,A) of A belongs to if and only if the integrated semigroup S t : = 0 t T s d s belongs to . For analytic semigroups, S t implies T t , and in this case we give precise estimates for the growth of the -norm of T t (e.g. the trace of T t ) in terms of the resolvent growth and the imbedding D(A) ↪ X.

Operators of Hankel type

S. Bermudo, S. A. M. Marcantognini, M. D. Morán (2006)

Czechoslovak Mathematical Journal

Hankel operators and their symbols, as generalized by V. Pták and P. Vrbová, are considered. The present note provides a parametric labeling of all the Hankel symbols of a given Hankel operator X by means of Schur class functions. The result includes uniqueness criteria and a Schur like formula. As a by-product, a new proof of the existence of Hankel symbols is obtained. The proof is established by associating to the data of the problem a suitable isometry V so that there is a bijective correspondence...

Operators on a Hilbert space similar to a part of the backward shift of multiplicity one

Yoichi Uetake (2001)

Studia Mathematica

Let A: X → X be a bounded operator on a separable complex Hilbert space X with an inner product · , · X . For b, c ∈ X, a weak resolvent of A is the complex function of the form ( I - z A ) - 1 b , c X . We will discuss an equivalent condition, in terms of weak resolvents, for A to be similar to a restriction of the backward shift of multiplicity 1.

Operators on spaces of analytic functions

K. Seddighi (1994)

Studia Mathematica

Let M z be the operator of multiplication by z on a Banach space of functions analytic on a plane domain G. We say that M z is polynomially bounded if M p C p G for every polynomial p. We give necessary and sufficient conditions for M z to be polynomially bounded. We also characterize the finite-codimensional invariant subspaces and derive some spectral properties of the multiplication operator in case the underlying space is Hilbert.

Currently displaying 461 – 480 of 502