Displaying 1261 – 1280 of 3198

Showing per page

Note on operational quantities and Mil'man isometry spectrum.

Manuel González, Antonio Martinón (1991)

Extracta Mathematicae

Let X and Y be infinite dimensional Banach spaces and let L(X,Y) be the class of all (linear continuous) operators acting between X and Y. Mil'man [5] introduced the isometry spectrum I(T) of T ∈ L(X,Y) in the following way:I(T) = {α ≥ 0: ∀ ε > 0, ∃M ∈ S∞(X), ∀x ∈ SM, | ||Tx|| - α | < ε}},where S∞(X) is the set of all infinite dimensional closed subspaces of X and SM := {x ∈ M: ||x|| = 1} is the unit sphere of M ∈ S∞(X). (...)

Notes on q-deformed operators

Schôichi Ôta, Franciszek Hugon Szafraniec (2004)

Studia Mathematica

The paper concerns operators of deformed structure like q-normal and q-hyponormal operators with the deformation parameter q being a positive number different from 1. In particular, an example of a q-hyponormal operator with empty spectrum is given, and q-hyponormality is characterized in terms of some operator inequalities.

Notes on some spectral radius and numerical radius inequalities

Amer Abu-Omar, Fuad Kittaneh (2015)

Studia Mathematica

We prove numerical radius inequalities for products, commutators, anticommutators, and sums of Hilbert space operators. A spectral radius inequality for sums of commuting operators is also given. Our results improve earlier well-known results.

n-supercyclic and strongly n-supercyclic operators in finite dimensions

Romuald Ernst (2014)

Studia Mathematica

We prove that on N , there is no n-supercyclic operator with 1 ≤ n < ⌊(N + 1)/2⌋, i.e. if N has an n-dimensional subspace whose orbit under T ( N ) is dense in N , then n is greater than ⌊(N + 1)/2⌋. Moreover, this value is optimal. We then consider the case of strongly n-supercyclic operators. An operator T ( N ) is strongly n-supercyclic if N has an n-dimensional subspace whose orbit under T is dense in ( N ) , the nth Grassmannian. We prove that strong n-supercyclicity does not occur non-trivially in finite...

n-supercyclic operators

Nathan S. Feldman (2002)

Studia Mathematica

We show that there are linear operators on Hilbert space that have n-dimensional subspaces with dense orbit, but no (n-1)-dimensional subspaces with dense orbit. This leads to a new class of operators, called the n-supercyclic operators. We show that many cohyponormal operators are n-supercyclic. Furthermore, we prove that for an n-supercyclic operator, there are n circles centered at the origin such that every component of the spectrum must intersect one of these circles.

Currently displaying 1261 – 1280 of 3198