On a theorem of Stinespring concerning integral operators of trace class.
Antilinear operators on a complex Hilbert space arise in various contexts in mathematical physics. In this paper, an analogue of the Weyl-von Neumann theorem for antilinear self-adjoint operators is proved, i.e. that an antilinear self-adjoint operator is the sum of a diagonalizable operator and of a compact operator with arbitrarily small Schatten p-norm. On the way, we discuss conjugations and their properties. A spectral integral representation for antilinear self-adjoint operators is constructed....
Let and . We prove that , the ideal of operators of Geľfand type , is contained in the ideal of -absolutely summing operators. For this generalizes a result of G. Bennett given for operators on a Hilbert space.
This survey features some recent developments concerning the bounded approximation property in Banach spaces. As a central theme, we discuss the weak bounded approximation property and the approximation property which is bounded for a Banach operator ideal. We also include an overview around the related long-standing open problem: Is the approximation property of a dual Banach space always metric?
For the complex interpolation method, Kouba proved an important interpolation formula for tensor products of Banach spaces. We give a partial extension of this formula in the injective case for the Gustavsson?Peetre method of interpolation within the setting of Banach function spaces.