Tensor products of almost r-summing maps.
We give an explicit description of a tensor norm equivalent on to the associated tensor norm to the ideal of -absolutely summing operators. As a consequence, we describe a tensor norm on the class of Banach spaces which is equivalent to the left projective tensor norm associated to .
We characterize Banach lattices on which every weak Banach-Saks operator is b-weakly compact.
Let M and N be nonzero subspaces of a Hilbert space H satisfying M ∩ N = {0} and M ∨ N = H and let T ∈ ℬ(H). Consider the question: If T leaves each of M and N invariant, respectively, intertwines M and N, does T decompose as a sum of two operators with the same property and each of which, in addition, annihilates one of the subspaces? If the angle between M and N is positive the answer is affirmative. If the angle is zero, the answer is still affirmative for finite rank operators but there are...
We transform the concept of p-summing operators, 1≤ p < ∞, to the more general setting of nonlinear Banach space operators. For 1-summing operators on B(Σ,X)-spaces having weak integral representations we generalize the Grothendieck-Pietsch domination principle. This is applied for the characterization of 1-summing Hammerstein operators on C(S,X)-spaces. For p-summing Hammerstein operators we derive the existence of control measures and p-summing extensions to B(Σ,X)-spaces.
We study the space of p-compact operators, , using the theory of tensor norms and operator ideals. We prove that is associated to , the left injective associate of the Chevet-Saphar tensor norm (which is equal to ). This allows us to relate the theory of p-summing operators to that of p-compact operators. Using the results known for the former class and appropriate hypotheses on E and F we prove that is equal to for a wide range of values of p and q, and show that our results are sharp....