Absolutely (∞,p) summing and weakly-p-compact operators in Banach spaces.
A sequence (xn) in a Banach space X is said to be weakly-p-summable, 1 ≤ p < ∞, when for each x* ∈ X*, (x*xn) ∈ lp. We shall say that a sequence (xn) is weakly-p-convergent if for some x ∈ X, (xn - x) is weakly-p-summable.