Displaying 61 – 80 of 228

Showing per page

Isometries of Musielak-Orlicz spaces II

J. Jamison, A. Kamińska, Pei-Kee Lin (1993)

Studia Mathematica

A characterization of isometries of complex Musielak-Orlicz spaces L Φ is given. If L Φ is not a Hilbert space and U : L Φ L Φ is a surjective isometry, then there exist a regular set isomorphism τ from (T,Σ,μ) onto itself and a measurable function w such that U(f) = w ·(f ∘ τ) for all f L Φ . Isometries of real Nakano spaces, a particular case of Musielak-Orlicz spaces, are also studied.

Lie algebras generated by Jordan operators

Peng Cao, Shanli Sun (2008)

Studia Mathematica

It is proved that if J i is a Jordan operator on a Hilbert space with the Jordan decomposition J i = N i + Q i , where N i is normal and Q i is compact and quasinilpotent, i = 1,2, and the Lie algebra generated by J₁,J₂ is an Engel Lie algebra, then the Banach algebra generated by J₁,J₂ is an Engel algebra. Some results for normal operators and Jordan operators on Banach spaces are given.

Logarithmic concavity, unitarity and selfadjointness

Jan Stochel (2005)

Banach Center Publications

Isometric automorphisms of normed linear spaces are characterized by suitable concavity properties of powers of operators. Bounded selfadjoint operators in Hilbert spaces are described by parallel concavity properties of the exponential group. Unbounded infinitesimal generators of 𝓒₀-groups of Hilbert space operators having concavity properties are characterized as well.

Currently displaying 61 – 80 of 228