Displaying 61 – 80 of 132

Showing per page

Essential norms of weighted composition operators on the space of Dirichlet series

Pascal Lefèvre (2009)

Studia Mathematica

We estimate the essential norm of a weighted composition operator relative to the class of Dunford-Pettis operators or the class of weakly compact operators, on the space of Dirichlet series. As particular cases, we obtain the precise value of the generalized essential norm of a composition operator and of a multiplication operator.

Fractional iteration in the disk algebra: prime ends and composition operators.

Manuel D. Contreras, Santiago Díaz-Madrigal (2005)

Revista Matemática Iberoamericana

In this paper we characterize the semigroups of analytic functions in the unit disk which lead to semigroups of operators in the disk algebra. These characterizations involve analytic as well as geometric aspects of the iterates and they are strongly related to the classical theorem of Carathéodory about local connection and boundary behaviour of univalent functions.

Hermitian composition operators on Hardy-Smirnov spaces

Gajath Gunatillake (2017)

Concrete Operators

Let Ω be an open simply connected proper subset of the complex plane and φ an analytic self map of Ω. If f is in the Hardy-Smirnov space defined on Ω, then the operator that takes f to f ⃘ φ is a composition operator. We show that for any Ω, analytic self maps that induce bounded Hermitian composition operators are of the form Φ(w) = aw + b where a is a real number. For ceratin Ω, we completely describe values of a and b that induce bounded Hermitian composition operators.

Intertwining Multiplication Operators on Function Spaces

Bahman Yousefi, Leila Bagheri (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Suppose that X is a Banach space of analytic functions on a plane domain Ω. We characterize the operators T that intertwine with the multiplication operators acting on X.

Invertible and normal composition operators on the Hilbert Hardy space of a half–plane

Valentin Matache (2016)

Concrete Operators

Operators on function spaces of form Cɸf = f ∘ ɸ, where ɸ is a fixed map are called composition operators with symbol ɸ. We study such operators acting on the Hilbert Hardy space over the right half-plane and characterize the situations when they are invertible, Fredholm, unitary, and Hermitian. We determine the normal composition operators with inner, respectively with Möbius symbol. In select cases, we calculate their spectra, essential spectra, and numerical ranges.

Isometric composition operators on weighted Dirichlet space

Shi-An Han, Ze-Hua Zhou (2016)

Czechoslovak Mathematical Journal

We investigate isometric composition operators on the weighted Dirichlet space 𝒟 α with standard weights ( 1 - | z | 2 ) α , α > - 1 . The main technique used comes from Martín and Vukotić who completely characterized the isometric composition operators on the classical Dirichlet space 𝒟 . We solve some of these but not in general. We also investigate the situation when 𝒟 α is equipped with another equivalent norm.

Joint subnormality of n-tuples and C₀-semigroups of composition operators on L²-spaces

Piotr Budzyński, Jan Stochel (2007)

Studia Mathematica

Joint subnormality of a family of composition operators on L²-space is characterized by means of positive definiteness of appropriate Radon-Nikodym derivatives. Next, simplified positive definiteness conditions guaranteeing joint subnormality of a C₀-semigroup of composition operators are supplied. Finally, the Radon-Nikodym derivatives associated to a jointly subnormal C₀-semigroup of composition operators are shown to be the Laplace transforms of probability measures (modulo a C₀-group of scalars)...

Joint subnormality of n-tuples and C₀-semigroups of composition operators on L²-spaces, II

Piotr Budzyński, Jan Stochel (2009)

Studia Mathematica

In the previous paper, we have characterized (joint) subnormality of a C₀-semigroup of composition operators on L²-space by positive definiteness of the Radon-Nikodym derivatives attached to it at each rational point. In the present paper, we show that in the case of C₀-groups of composition operators on L²-space the positive definiteness requirement can be replaced by a kind of consistency condition which seems to be simpler to work with. It turns out that the consistency condition also characterizes...

Currently displaying 61 – 80 of 132