On a -polar decomposition of a bounded operator and matrices of -symmetric and -skew-symmetric operators.
The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let be a Hilbert space and let be a positive bounded operator on . The semi-inner product , , induces a semi-norm . This makes into a semi-Hilbertian space. An operator is said to be --normal if for some positive integers and .
The paper introduces a notion of quasi-compact operator net on a Banach space. It is proved that quasi-compactness of a uniform Lotz-Räbiger net is equivalent to quasi-compactness of some operator . We prove that strong convergence of a quasi-compact uniform Lotz-Räbiger net implies uniform convergence to a finite-rank projection. Precompactness of operator nets is also investigated.
Let P,Q be two linear idempotents on a Banach space. We show that the closedness of the range and complementarity of the kernel (range) of linear combinations of P and Q are independent of the choice of coefficients. This generalizes known results and shows that many spectral properties of linear combinations do not depend on their coefficients.
A bounded linear operator T on a Banach space X is called an (m,p)-isometry for a positive integer m and a real number p ≥ 1 if, for any vector x ∈ X, . We prove that any power of an (m,p)-isometry is also an (m,p)-isometry. In general the converse is not true. However, we prove that if and are (m,p)-isometries for a positive integer r, then T is an (m,p)-isometry. More precisely, if is an (m,p)-isometry and is an (l,p)-isometry, then is an (h,p)-isometry, where t = gcd(r,s) and h = min(m,l)....