Displaying 181 – 200 of 227

Showing per page

Continuity of Pseudo-differential Operators on Bessel And Besov Spaces

Moussai, Madani (2001)

Serdica Mathematical Journal

We study the continuity of pseudo-differential operators on Bessel potential spaces Hs|p (Rn ), and on the corresponding Besov spaces B^(s,q)p (R ^n). The modulus of continuity ω we use is assumed to satisfy j≥0, ∑ [ω(2−j )Ω(2j )]2 < ∞ where Ω is a suitable positive function.

Convergence of iterates of linear operators and the Kelisky-Rivlin type theorems

Jacek Jachymski (2009)

Studia Mathematica

Let X be a Banach space and T ∈ L(X), the space of all bounded linear operators on X. We give a list of necessary and sufficient conditions for the uniform stability of T, that is, for the convergence of the sequence ( T ) n of iterates of T in the uniform topology of L(X). In particular, T is uniformly stable iff for some p ∈ ℕ, the restriction of the pth iterate of T to the range of I-T is a Banach contraction. Our proof is elementary: It uses simple facts from linear algebra, and the Banach Contraction...

Currently displaying 181 – 200 of 227