Convexity, boundedness, and almost periodicity for differential equations in Hilbert space.
A class of convolution operators on spaces of holomorphic functions related to the Hadamard multiplication theorem for power series and generalizing infinite order Euler differential operators is introduced and investigated. Emphasis is placed on questions concerning injectivity, denseness of range and surjectivity of the operators.
For a locally compact group G we consider the algebra CD(G) of convolution-dominated operators on L²(G), where an operator A: L²(G) → L²(G) is called convolution-dominated if there exists a ∈ L¹(G) such that for all f ∈ L²(G) |Af(x)| ≤ a⋆|f|(x), for almost all x ∈ G. (1) The case of discrete groups was treated in previous publications [fgl08a, fgl08]. For non-discrete groups we investigate a subalgebra of regular convolution-dominated operators generated by product convolution operators, where the...
We study the presence of copies of ’s uniformly in the spaces and . By using Dvoretzky’s theorem we deduce that if is an infinite-dimensional Banach space, then contains -uniformly copies of ’s and contains -uniformly copies of ’s for all . As an application, we show that if is an infinite-dimensional Banach space then the spaces and are distinct, extending the well-known result that the spaces and are distinct.
In this paper the author proved the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with variable exponent. As an application he proved the boundedness of certain sublinear operators on the weighted variable Lebesgue space. The proof of the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with a variable exponent does not contain any mistakes. But in the proof of the boundedness of certain sublinear operators on the weighted...
Here are given the figures of this paper, initially published with some omissions.
We give a corrected proof of Theorem 2.10 in our paper “Commutators on ” [Studia Math. 206 (2011), 175-190] for the case 1 < q < p < ∞. The case when 1 = q < p < ∞ remains open. As a consequence, the Main Theorem and Corollary 2.17 in that paper are only valid for 1 < p,q < ∞.
Criteria are given for determining the weak compactness, or otherwise, of the integration map associated with a vector measure. For instance, the space of integrable functions of a weakly compact integration map is necessarily normable for the mean convergence topology. Results are presented which relate weak compactness of the integration map with the property of being a bicontinuous isomorphism onto its range. Finally, a detailed description is given of the compactness properties for the integration...