Displaying 41 – 60 of 3247

Showing per page

A counterexample in operator theory

Antonio Córdoba (1993)

Publicacions Matemàtiques

The purpose of this note is to give an explicit construction of a bounded operator T acting on the space L2[0,1] such that |Tf(x)| ≤ ∫01 |f(y)| dy for a.e. x ∈ [0.1], and, nevertheless, ||T||Sp = ∞ for every p < 2. Here || ||Sp denotes the norm associated to the Schatten-Von Neumann classes.

A functional calculus description of real interpolation spaces for sectorial operators

Markus Haase (2005)

Studia Mathematica

For a holomorphic function ψ defined on a sector we give a condition implying the identity ( X , ( A α ) ) θ , p = x X | t - θ R e α ψ ( t A ) L p ( ( 0 , ) ; X ) where A is a sectorial operator on a Banach space X. This yields all common descriptions of the real interpolation spaces for sectorial operators and allows easy proofs of the moment inequalities and reiteration results for fractional powers.

A generalization of peripherally-multiplicative surjections between standard operator algebras

Takeshi Miura, Dai Honma (2009)

Open Mathematics

Let A and B be standard operator algebras on Banach spaces X and Y, respectively. The peripheral spectrum σπ (T) of T is defined by σπ (T) = z ∈ σ(T): |z| = maxw∈σ(T) |w|. If surjective (not necessarily linear nor continuous) maps φ, ϕ: A → B satisfy σπ (φ(S)ϕ(T)) = σπ (ST) for all S; T ∈ A, then φ and ϕ are either of the form φ(T) = A 1 TA 2 −1 and ϕ(T) = A 2 TA 1 −1 for some bijective bounded linear operators A 1; A 2 of X onto Y, or of the form φ(T) = B 1 T*B 2 −1 and ϕ(T) = B 2 T*B −1 for some...

A generalization of the Aleksandrov operator and adjoints of weighted composition operators

Eva A. Gallardo-Gutiérrez, Jonathan R. Partington (2013)

Annales de l’institut Fourier

A generalization of the Aleksandrov operator is provided, in order to represent the adjoint of a weighted composition operator on 2 by means of an integral with respect to a measure. In particular, we show the existence of a family of measures which represents the adjoint of a weighted composition operator under fairly mild assumptions, and we discuss not only uniqueness but also the generalization of Aleksandrov–Clark measures which corresponds to the unweighted case, that is, to the adjoint of...

Currently displaying 41 – 60 of 3247