Displaying 41 – 60 of 372

Showing per page

A functional calculus description of real interpolation spaces for sectorial operators

Markus Haase (2005)

Studia Mathematica

For a holomorphic function ψ defined on a sector we give a condition implying the identity ( X , ( A α ) ) θ , p = x X | t - θ R e α ψ ( t A ) L p ( ( 0 , ) ; X ) where A is a sectorial operator on a Banach space X. This yields all common descriptions of the real interpolation spaces for sectorial operators and allows easy proofs of the moment inequalities and reiteration results for fractional powers.

A generalization of peripherally-multiplicative surjections between standard operator algebras

Takeshi Miura, Dai Honma (2009)

Open Mathematics

Let A and B be standard operator algebras on Banach spaces X and Y, respectively. The peripheral spectrum σπ (T) of T is defined by σπ (T) = z ∈ σ(T): |z| = maxw∈σ(T) |w|. If surjective (not necessarily linear nor continuous) maps φ, ϕ: A → B satisfy σπ (φ(S)ϕ(T)) = σπ (ST) for all S; T ∈ A, then φ and ϕ are either of the form φ(T) = A 1 TA 2 −1 and ϕ(T) = A 2 TA 1 −1 for some bijective bounded linear operators A 1; A 2 of X onto Y, or of the form φ(T) = B 1 T*B 2 −1 and ϕ(T) = B 2 T*B −1 for some...

A generalization of the Aleksandrov operator and adjoints of weighted composition operators

Eva A. Gallardo-Gutiérrez, Jonathan R. Partington (2013)

Annales de l’institut Fourier

A generalization of the Aleksandrov operator is provided, in order to represent the adjoint of a weighted composition operator on 2 by means of an integral with respect to a measure. In particular, we show the existence of a family of measures which represents the adjoint of a weighted composition operator under fairly mild assumptions, and we discuss not only uniqueness but also the generalization of Aleksandrov–Clark measures which corresponds to the unweighted case, that is, to the adjoint of...

A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach

Sébastien Breteaux (2014)

Annales de l’institut Fourier

In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.

A Gowers tree like space and the space of its bounded linear operators

Giorgos Petsoulas, Theocharis Raikoftsalis (2009)

Studia Mathematica

The famous Gowers tree space is the first example of a space not containing c₀, ℓ₁ or a reflexive subspace. We present a space with a similar construction and prove that it is hereditarily indecomposable (HI) and has ℓ₂ as a quotient space. Furthermore, we show that every bounded linear operator on it is of the form λI + W where W is a weakly compact (hence strictly singular) operator.

Currently displaying 41 – 60 of 372