Displaying 41 – 60 of 101

Showing per page

Pointwise multipliers on martingale Campanato spaces

Eiichi Nakai, Gaku Sadasue (2014)

Studia Mathematica

We introduce generalized Campanato spaces p , ϕ on a probability space (Ω,ℱ,P), where p ∈ [1,∞) and ϕ: (0,1] → (0,∞). If p = 1 and ϕ ≡ 1, then p , ϕ = B M O . We give a characterization of the set of all pointwise multipliers on p , ϕ .

Polar lattices from the point of view of nuclear spaces.

Wojciech Banaszczyk (1989)

Revista Matemática de la Universidad Complutense de Madrid

The aim of this survey article is to show certain questions concerning nuclear spaces and linear operators in normed spaces lead to questions from geometry of numbers.

Polynomial approximations and universality

A. Mouze (2010)

Studia Mathematica

We give another version of the recently developed abstract theory of universal series to exhibit a necessary and sufficient condition of polynomial approximation type for the existence of universal elements. This certainly covers the case of simultaneous approximation with a sequence of continuous linear mappings. In the case of a sequence of unbounded operators the same condition ensures existence and density of universal elements. Several known results, stronger statements or new results can be...

Polynomially compact derivations on Banach algebras

Matej Brešar, Yuri V. Turovskii (2009)

Studia Mathematica

We consider a continuous derivation D on a Banach algebra 𝓐 such that p(D) is a compact operator for some polynomial p. It is shown that either 𝓐 has a nonzero finite-dimensional ideal not contained in the radical rad(𝓐) of 𝓐 or there exists another polynomial p̃ such that p̃(D) maps 𝓐 into rad(𝓐). A special case where Dⁿ is compact is discussed in greater detail.

Positive L¹ operators associated with nonsingular mappings and an example of E. Hille

Isaac Kornfeld, Wojciech Kosek (2003)

Colloquium Mathematicae

E. Hille [Hi1] gave an example of an operator in L¹[0,1] satisfying the mean ergodic theorem (MET) and such that supₙ||Tⁿ|| = ∞ (actually, | | T | | n 1 / 4 ). This was the first example of a non-power bounded mean ergodic L¹ operator. In this note, the possible rates of growth (in n) of the norms of Tⁿ for such operators are studied. We show that, for every γ > 0, there are positive L¹ operators T satisfying the MET with l i m n | | T | | / n 1 - γ = . I n t h e c l a s s o f p o s i t i v e o p e r a t o r s t h e s e e x a m p l e s a r e t h e b e s t p o s s i b l e i n t h e s e n s e t h a t f o r e v e r y s u c h o p e r a t o r T t h e r e e x i s t s a γ > 0 s u c h t h a t lim supn→ ∞ ||Tⁿ||/n1-γ₀ = 0 . A class of numerical sequences αₙ, intimately related to the...

Positive linear maps of matrix algebras

W. A. Majewski (2012)

Banach Center Publications

A characterization of the structure of positive maps is presented. This sheds some more light on the old open problem studied both in Quantum Information and Operator Algebras. Our arguments are based on the concept of exposed points, links between tensor products and mapping spaces and convex analysis.

Positive operator bimeasures and a noncommutative generalization

Kari Ylinen (1996)

Studia Mathematica

For C*-algebras A and B and a Hilbert space H, a class of bilinear maps Φ: A× B → L(H), analogous to completely positive linear maps, is studied. A Stinespring type representation theorem is proved, and in case A and B are commutative, the class is shown to coincide with that of positive bilinear maps. As an application, the extendibility of a positive operator bimeasure to a positive operator measure is shown to be equivalent to various conditions involving positive scalar bimeasures, pairs of...

Positive Schatten class Toeplitz operators on the ball

Boo Rim Choe, Hyungwoon Koo, Young Joo Lee (2008)

Studia Mathematica

On the harmonic Bergman space of the ball, we give characterizations for an arbitrary positive Toeplitz operator to be a Schatten class operator in terms of averaging functions and Berezin transforms.

Currently displaying 41 – 60 of 101