A Generalization of the Stein-Rosenberg Theorem to Banach Spaces.
In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.
The famous Gowers tree space is the first example of a space not containing c₀, ℓ₁ or a reflexive subspace. We present a space with a similar construction and prove that it is hereditarily indecomposable (HI) and has ℓ₂ as a quotient space. Furthermore, we show that every bounded linear operator on it is of the form λI + W where W is a weakly compact (hence strictly singular) operator.
Let μ be a finite positive Borel measure on [0,1). Let be the Hankel matrix with entries . The matrix induces formally an operator on the space of all analytic functions in the unit disc by the fomula , z ∈ , where is an analytic function in . We characterize those positive Borel measures on [0,1) such that for all f in the Hardy space H¹, and among them we describe those for which is bounded and compact on H¹. We also study the analogous problem for the Bergman space A².
Let φ be a Jordan automorphism of an algebra . The situation when an element a ∈ satisfies is considered. The result which we obtain implies the Kleinecke-Shirokov theorem and Jacobson’s lemma.
This article is dedicated to localization of the principal eigenvalue (PE) of the Stokes operator acting on solenoidal vector fields that vanish outside a large random domain modeling the pore space in a cubic block of porous material with disordered micro-structure. Its main result is an asymptotically deterministic lower bound for the PE of the sum of a low compressibility approximation to the Stokes operator and a small scaled random potential term, which is applied to produce a similar bound...
Motivated by the concept of separation between propositions in quantum logic, we introduce the so-called separation metric or Santos metric on the space of all projections in a Hilbert space. We show that the resulting metric space has only "nice" surjective isometries. On the nontrivial projections they are all unitarily or antiunitarily equivalent to the identity or to taking the orthogonal complement. We relate this result to Wigner's classical theorem on the form of quantum mechanical symmetry...
We present a change of variable method and use it to prove the equivalence to bundle shifts for certain analytic Toeplitz operators on the Banach spaces . In Section 2 we see this approach applied in the analysis of essential spectra. Some partial results were obtained in [9] in the Hilbert space case.