Interpolation by multipliers on certain spaces of analytic functions.
We study the connection between intersection properties of balls and the existence of large faces of the unit ball in Banach spaces. Hanner’s result that a real space has the 3.2 intersection property if an only if disjoint faces of the unit ball are contained in parallel hyperplanes is extended to infinite dimensional spaces. It is shown that the space of compact operators from a space to a space has the 3.2 intersection property if and only if and have the 3.2 intersection property and...
Suppose that X is a Banach space of analytic functions on a plane domain Ω. We characterize the operators T that intertwine with the multiplication operators acting on X.
The lattice of invariant subspaces of several Banach spaces of analytic functions on the unit disk, for example the Bergman spaces and the Dirichlet spaces, have been studied recently. A natural question is to what extent these investigations carry over to analogously defined spaces on an annulus. We consider this question in the context of general Banach spaces of analytic functions on finitely connected domains Ω. The main result reads as follows: Assume that B is a Banach space of analytic functions...
Ce travail a pour objet l’étude d’une méthode de « discrétisation » du Laplacien dans le problème de Poisson à deux dimensions sur un rectangle, avec des conditions aux limites de Dirichlet. Nous approchons l’opérateur Laplacien par une matrice de Toeplitz à blocs, eux-mêmes de Toeplitz, et nous établissons une formule donnant les blocs de l’inverse de cette matrice. Nous donnons ensuite un développement asymptotique de la trace de la matrice inverse, et du déterminant de la matrice de Toeplitz....