Displaying 101 – 120 of 127

Showing per page

Extensions, dilations and functional models of infinite Jacobi matrix

B. P. Allahverdiev (2005)

Czechoslovak Mathematical Journal

A space of boundary values is constructed for the minimal symmetric operator generated by an infinite Jacobi matrix in the limit-circle case. A description of all maximal dissipative, accretive and selfadjoint extensions of such a symmetric operator is given in terms of boundary conditions at infinity. We construct a selfadjoint dilation of maximal dissipative operator and its incoming and outgoing spectral representations, which makes it possible to determine the scattering matrix of dilation....

Extensions of symmetric operators I: The inner characteristic function case

R.T.W. Martin (2015)

Concrete Operators

Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θB by constructing a bijection between the...

Extensions of the representation theorems of Riesz and Fréchet

João C. Prandini (1993)

Mathematica Bohemica

We present two types of representation theorems: one for linear continuous operators on space of Banach valued regulated functions of several real variables and the other for bilinear continuous operators on cartesian products of spaces of regulated functions of a real variable taking values on Banach spaces. We use generalizations of the notions of functions of bounded variation in the sense of Vitali and Fréchet and the Riemann-Stieltjes-Dushnik or interior integral. A few applications using geometry...

Extreme compact operators from Orlicz spaces to C ( Ω )

Shutao Chen, Marek Wisła (1993)

Commentationes Mathematicae Universitatis Carolinae

Let E ϕ ( μ ) be the subspace of finite elements of an Orlicz space endowed with the Luxemburg norm. The main theorem says that a compact linear operator T : E ϕ ( μ ) C ( Ω ) is extreme if and only if T * ω Ext B ( ( E ϕ ( μ ) ) * ) on a dense subset of Ω , where Ω is a compact Hausdorff topological space and T * ω , x = ( T x ) ( ω ) . This is done via the description of the extreme points of the space of continuous functions C ( Ω , L ϕ ( μ ) ) , L ϕ ( μ ) being an Orlicz space equipped with the Orlicz norm (conjugate to the Luxemburg one). There is also given a theorem on closedness of the set of extreme...

Currently displaying 101 – 120 of 127