Théorèmes de factorisation dans les espaces (suite)
Our aim is to prove that for any fixed 1/2 < α < 1 there exists a Hilbert space contraction T such that σ(T) = 1 and . This answers Zemánek’s question on the time regularity property.
If ϕ is an analytic self-mapping of the unit disc D and if is the Hardy-Hilbert space on D, the composition operator on is defined by . In this article, we consider which Toeplitz operators satisfy
We study Toeplitz operators with radial symbols in weighted Bergman spaces , 1 < p < ∞, on the disc. Using a decomposition of into finite-dimensional subspaces the operator can be considered as a coefficient multiplier. This leads to new results on boundedness of and also shows a connection with Hardy space multipliers. Using another method we also prove a necessary and sufficient condition for the boundedness of for a satisfying an assumption on the positivity of certain indefinite...