Logarithmic Sobolev inequalities for unbounded spin systems revisited
Michel Ledoux (2001)
Séminaire de probabilités de Strasbourg
Marco Romito (1998)
Monatshefte für Mathematik
Francoise Lust-Piquard (1995)
Mathematische Annalen
Ryszard Rudnicki (2000)
Applicationes Mathematicae
This note contains a survey of recent results concerning asymptotic properties of Markov operators and semigroups. Some biological and physical applications are given.
Nicolas Privault, Jean-Claude Zambrini (2004)
Annales de l'I.H.P. Probabilités et statistiques
Tetsuya Kazumi, Ichiro Shigekawa (1992)
Séminaire de probabilités de Strasbourg
Boulanouar, Mohamed (2007)
Electronic Journal of Differential Equations (EJDE) [electronic only]
E. Brian Davies, J. Martin Lindsay (1992)
Mathematische Zeitschrift
Wilhelm Stannat (1999)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Jacek Zienkiewicz (2003)
Colloquium Mathematicae
Let G be the simplest nilpotent Lie group of step 3. We prove that the densities of the semigroup generated by the sublaplacian on G are not real-analytic.
Enrico Priola (1999)
Studia Mathematica
We study a new class of Markov type semigroups (not strongly continuous in general) in the space of all real, uniformly continuous and bounded functions on a separable metric space E. Our results allow us to characterize the generators of Markov transition semigroups in infinite dimensions such as the heat and the Ornstein-Uhlenbeck semigroups.
V. Jakšić, C. A. Pillet (1995)
Annales de l'I.H.P. Physique théorique
Wojciech Bartoszek (1987)
Colloquium Mathematicae
Beniamin Goldys (1999)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Let be a transition semigroup of the Hilbert space-valued nonsymmetric Ornstein-Uhlenbeck process and let denote its Gaussian invariant measure. We show that the semigroup is analytic in if and only if its generator is variational. In particular, we show that the transition semigroup of a finite dimensional Ornstein-Uhlenbeck process is analytic if and only if the Wiener process is nondegenerate.
Jan A. Van Casteren (1996)
Annales mathématiques Blaise Pascal
Mohamed Hmissi, Ezzedine Mliki (2010)
Commentationes Mathematicae Universitatis Carolinae
We study the integral representation of potentials by exit laws in the framework of sub-Markovian semigroups of bounded operators acting on . We mainly investigate subordinated semigroups in the Bochner sense by means of -subordinators. By considering the one-sided stable subordinators, we deduce an integral representation for the original semigroup.
Alexander M. Chebotarev, Franco Fagnola (1995)
Séminaire de probabilités de Strasbourg
Seiichiro Kusuoka, Carlo Marinelli (2014)
Annales de l'I.H.P. Probabilités et statistiques
We prove smoothing properties of nonlocal transition semigroups associated to a class of stochastic differential equations (SDE) in driven by additive pure-jump Lévy noise. In particular, we assume that the Lévy process driving the SDE is the sum of a subordinated Wiener process (i.e. , where is an increasing pure-jump Lévy process starting at zero and independent of the Wiener process ) and of an arbitrary Lévy process independent of , that the drift coefficient is continuous (but not...
Henryk Gacki (2005)
Annales Polonici Mathematici
A new version of the maximum principle is presented. The classical Kantorovich-Rubinstein principle gives necessary conditions for the maxima of a linear functional acting on the space of Lipschitzian functions. The maximum value of this functional defines the Hutchinson metric on the space of probability measures. We show an analogous result for the Fortet-Mourier metric. This principle is then applied in the stability theory of Markov-Feller semigroups.
Wojciech Bartoszek, Ryszard Rębowski (1988)
Colloquium Mathematicae