Displaying 341 – 360 of 1072

Showing per page

Feller semigroups and degenerate elliptic operators with Wentzell boundary conditions

Kazuaki Taira, Angelo Favini, Silvia Romanelli (2001)

Studia Mathematica

This paper is devoted to the functional analytic approach to the problem of construction of Feller semigroups with Wentzell boundary conditions in the characteristic case. Our results may be stated as follows: We can construct Feller semigroups corresponding to a diffusion phenomenon including absorption, reflection, viscosity, diffusion along the boundary and jump at each point of the boundary.

Fine scales of decay of operator semigroups

Charles J. K. Batty, Ralph Chill, Yuri Tomilov (2016)

Journal of the European Mathematical Society

Motivated by potential applications to partial differential equations, we develop a theory of fine scales of decay rates for operator semigroups. The theory contains, unifies, and extends several notable results in the literature on decay of operator semigroups and yields a number of new ones. Its core is a new operator-theoretical method of deriving rates of decay combining ingredients from functional calculus and complex, real and harmonic analysis. It also leads to several results of independent...

Forms, functional calculus, cosine functions and perturbation

Wolfgang Arendt, Charles J. K. Batty (2007)

Banach Center Publications

In this article we describe properties of unbounded operators related to evolutionary problems. It is a survey article which also contains several new results. For instance we give a characterization of cosine functions in terms of mild well-posedness of the Cauchy problem of order 2, and we show that the property of having a bounded H -calculus is stable under rank-1 perturbations whereas the property of being associated with a closed form and the property of generating a cosine function are not....

Formulae for joint spectral radii of sets of operators

Victor S. Shulman, Yuriĭ V. Turovskii (2002)

Studia Mathematica

The formula ϱ ( M ) = m a x ϱ χ ( M ) , r ( M ) is proved for precompact sets M of weakly compact operators on a Banach space. Here ϱ(M) is the joint spectral radius (the Rota-Strang radius), ϱ χ ( M ) is the Hausdorff spectral radius (connected with the Hausdorff measure of noncompactness) and r(M) is the Berger-Wang radius.

Currently displaying 341 – 360 of 1072