Displaying 521 – 540 of 1072

Showing per page

Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in  L p -spaces

Jan Prüss (2002)

Mathematica Bohemica

Several abstract model problems of elliptic and parabolic type with inhomogeneous initial and boundary data are discussed. By means of a variant of the Dore-Venni theorem, real and complex interpolation, and trace theorems, optimal L p -regularity is shown. By means of this purely operator theoretic approach, classical results on L p -regularity of the diffusion equation with inhomogeneous Dirichlet or Neumann or Robin condition are recovered. An application to a dynamic boundary value problem with surface...

Maximal regularity for second order non-autonomous Cauchy problems

Charles J. K. Batty, Ralph Chill, Sachi Srivastava (2008)

Studia Mathematica

We consider some non-autonomous second order Cauchy problems of the form ü + B(t)u̇ + A(t)u = f(t ∈ [0,T]), u(0) = u̇(0) = 0. We assume that the first order problem u̇ + B(t)u = f(t ∈ [0,T]), u(0) = 0, has L p -maximal regularity. Then we establish L p -maximal regularity of the second order problem in situations when the domains of B(t₁) and A(t₂) always coincide, or when A(t) = κB(t).

Maximal regularity of delay equations in Banach spaces

Carlos Lizama, Verónica Poblete (2006)

Studia Mathematica

We characterize existence and uniqueness of solutions for an inhomogeneous abstract delay equation in Hölder spaces. The main tool is the theory of operator-valued Fourier multipliers.

Maximal regularity of discrete and continuous time evolution equations

Sönke Blunck (2001)

Studia Mathematica

We consider the maximal regularity problem for the discrete time evolution equation u n + 1 - T u = f for all n ∈ ℕ₀, u₀ = 0, where T is a bounded operator on a UMD space X. We characterize the discrete maximal regularity of T by two types of conditions: firstly by R-boundedness properties of the discrete time semigroup ( T ) n and of the resolvent R(λ,T), secondly by the maximal regularity of the continuous time evolution equation u’(t) - Au(t) = f(t) for all t > 0, u(0) = 0, where A:= T - I. By recent results of...

Maximizers for the Strichartz Inequality

Damiano Foschi (2007)

Journal of the European Mathematical Society

We compute explicitly the best constants and, by solving some functional equations, we find all maximizers for homogeneous Strichartz estimates for the Schrödinger equation and for the wave equation in the cases when the Lebesgue exponent is an even integer.

Mild integrated C-existence families

Shen Wang (1995)

Studia Mathematica

We study mild n times integrated C-existence families without the assumption of exponential boundedness. We present several equivalent conditions for these families. Hille-Yosida type necessary and sufficient conditions are given for the exponentially bounded case.

Mittelergodische Halbgruppen linearer Operatoren

Rainer J. Nagel (1973)

Annales de l'institut Fourier

A semigroup H in L s ( E ) , E a Banach space, is called mean ergodic, if its closed convex hull in L s ( E ) has a zero element. Compact groups, compact abelian semigroups or contractive semigroups on Hilbert spaces are mean ergodic.Banach lattices prove to be a natural frame for further mean ergodic theorems: let H be a bounded semigroup of positive operators on a Banach lattice E with order continuous norm. H is mean ergodic if there is a H -subinvariant quasi-interior point of E + and a H ' -subinvariant strictly...

Moment sequences and abstract Cauchy problems

Claus Müller (2003)

Commentationes Mathematicae Universitatis Carolinae

We give a new characterization of the solvability of an abstract Cauchy problems in terms of moment sequences, using the resolvent operator at only one point.

Currently displaying 521 – 540 of 1072