Common fixed points under contractive conditions in symmetric spaces.
In this paper, we propose and analyse an iterative algorithm for the approximation of a common solution for a finite family of k-strict pseudocontractions and two finite families of generalized equilibrium problems in the setting of Hilbert spaces. Strong convergence results of the proposed iterative algorithm together with some applications to solve the variational inequality problems are established in such setting. Our results generalize and improve various existing results in the current literature....
Let be a closed convex subset of a Hilbert space and a nonexpansive multivalued map with a unique fixed point such that . It is shown that we can construct a sequence of approximating fixed points sets converging in the sense of Mosco to .