Displaying 101 – 120 of 127

Showing per page

Remarques sur le calcul symbolique dans certains espaces de Besov à valeurs vectorielles

Salah Eddine Allaoui (2009)

Annales mathématiques Blaise Pascal

Dans ce travail on s’intéresse aux opérateurs de composition T f ( g ) : = f g sur certains espaces de Besov et de Lizorkin-Triebel à valeurs dans m . Dans le but de caractériser les fonctions qui opèrent, on établit que la condition de Lipschitz, locale ou globale suivant que l’espace B p , q s ( n , m ) ou F p , q s ( n , m ) se plonge ou non dans L ( n , m ) , est nécessaire pour s > 0 , et que l’appartenance locale au même espace l’est aussi pour m n . Nous étudions enfin la régularité de l’opérateur T f .

Resonance in Preisach systems

Pavel Krejčí (2000)

Applications of Mathematics

This paper deals with the asymptotic behavior as t of solutions u to the forced Preisach oscillator equation w ¨ ( t ) + u ( t ) = ψ ( t ) , w = u + 𝒫 [ u ] , where 𝒫 is a Preisach hysteresis operator, ψ L ( 0 , ) is a given function and t 0 is the time variable. We establish an explicit asymptotic relation between the Preisach measure and the function ψ (or, in a more physical terminology, a balance condition between the hysteresis dissipation and the external forcing) which guarantees that every solution remains bounded for all times. Examples show...

Semicontinuity and continuous selections for the multivalued superposition operator without assuming growth-type conditions

Hông Thái Nguyêñ (2004)

Studia Mathematica

Let Ω be a measure space, and E, F be separable Banach spaces. Given a multifunction f : Ω × E 2 F , denote by N f ( x ) the set of all measurable selections of the multifunction f ( · , x ( · ) ) : Ω 2 F , s ↦ f(s,x(s)), for a function x: Ω → E. First, we obtain new theorems on H-upper/H-lower/lower semicontinuity (without assuming any conditions on the growth of the generating multifunction f(s,u) with respect to u) for the multivalued (Nemytskiĭ) superposition operator N f mapping some open domain G ⊂ X into 2 Y , where X and Y are Köthe-Bochner...

Superposition operator on the space of sequences almost converging to zero

Egor Alekhno (2012)

Open Mathematics

We study the superposition operator f on on the space ac 0 of sequences almost converging to zero. Conditions are derived for which f has a representation of the form f x = a+bx +g x, for all x ∈ ac 0 with a = f 0, b ∈ D(ac 0), g a superposition operator from ℓ∞ into I(ac 0), D(ac 0) = {z: zx ∈ ac 0 for all x ∈ ac 0}, and I(ac 0) the maximal ideal in ac 0. If f is generated by a function f of a real variable, then f is linear. We consider the conditions for which a bounded function f generates f...

Superposition operators and functions of bounded p-variation.

Gérard Bourdaud, Massimo Lanza de Cristoforis, Winfried Sickel (2006)

Revista Matemática Iberoamericana

We characterize the set of all functions f of R to itself such that the associated superposition operator Tf: g → f º g maps the class BVp1(R) into itself. Here BVp1(R), 1 ≤ p < ∞, denotes the set of primitives of functions of bounded p-variation, endowed with a suitable norm. It turns out that such an operator is always bounded and sublinear. Also, consequences for the boundedness of superposition operators defined on Besov spaces Bp,qs are discussed.

The continuity of superposition operators on some sequence spaces defined by moduli

Enno Kolk, Annemai Raidjõe (2007)

Czechoslovak Mathematical Journal

Let λ and μ be solid sequence spaces. For a sequence of modulus functions Φ = ( ϕ k ) let λ ( Φ ) = { x = ( x k ) ( ϕ k ( | x k | ) ) λ } . Given another sequence of modulus functions Ψ = ( ψ k ) , we characterize the continuity of the superposition operators P f from λ ( Φ ) into μ ( Ψ ) for some Banach sequence spaces λ and μ under the assumptions that the moduli ϕ k ( k ...

The Grothendieck-Pietsch domination principle for nonlinear summing integral operators

Karl Lermer (1998)

Studia Mathematica

We transform the concept of p-summing operators, 1≤ p < ∞, to the more general setting of nonlinear Banach space operators. For 1-summing operators on B(Σ,X)-spaces having weak integral representations we generalize the Grothendieck-Pietsch domination principle. This is applied for the characterization of 1-summing Hammerstein operators on C(S,X)-spaces. For p-summing Hammerstein operators we derive the existence of control measures and p-summing extensions to B(Σ,X)-spaces.

Currently displaying 101 – 120 of 127