The search session has expired. Please query the service again.

Displaying 761 – 780 of 2510

Showing per page

Effective energy integral functionals for thin films with three dimensional bending moment in the Orlicz-Sobolev space setting

Włodzimierz Laskowski, Hong Thai Nguyen (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we consider an elastic thin film ω ⊂ ℝ² with the bending moment depending also on the third thickness variable. The effective energy functional defined on the Orlicz-Sobolev space over ω is described by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type...

Eigenvalue results for pseudomonotone perturbations of maximal monotone operators

In-Sook Kim, Jung-Hyun Bae (2013)

Open Mathematics

Let X be an infinite-dimensional real reflexive Banach space such that X and its dual X* are locally uniformly convex. Suppose that T: X⊃D(T) → 2X* is a maximal monotone multi-valued operator and C: X⊃D(C) → X* is a generalized pseudomonotone quasibounded operator with L ⊂ D(C), where L is a dense subspace of X. Applying a recent degree theory of Kartsatos and Skrypnik, we establish the existence of an eigensolution to the nonlinear inclusion 0 ∈ T x + λ C x, with a regularization method by means...

Ekeland's variational principle in locally p-convex spaces and related results

J. H. Qiu, S. Rolewicz (2008)

Studia Mathematica

In the framework of locally p-convex spaces, two versions of Ekeland's variational principle and two versions of Caristi's fixed point theorem are given. It is shown that the four results are mutually equivalent. Moreover, by using the local completeness theory, a p-drop theorem in locally p-convex spaces is proven.

Currently displaying 761 – 780 of 2510