Displaying 61 – 80 of 111

Showing per page

On local automorphisms and mappings that preserve idempotents

Matej Brešar, Peter Šemrl (1995)

Studia Mathematica

Let B(H) be the algebra of all bounded linear operators on a Hilbert space H. Automorphisms and antiautomorphisms are the only bijective linear mappings θ of B(H) with the property that θ(P) is an idempotent whenever P ∈ B(H) is. In case H is separable and infinite-dimensional, every local automorphism of B(H) is an automorphism.

On strong generation of B(ℋ) by two commutative C*-algebras

R. Berntzen, A. Sołtysiak (1997)

Studia Mathematica

The algebra B(ℋ) of all bounded operators on a Hilbert space ℋ is generated in the strong operator topology by a single one-dimensional projection and a family of commuting unitary operators with cardinality not exceeding dim ℋ. This answers Problem 8 posed by W. Żelazko in [6].

On the range of a Jordan *-derivation

Péter Battyányi (1996)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we examine some questions concerned with certain ``skew'' properties of the range of a Jordan *-derivation. In the first part we deal with the question, for example, when the range of a Jordan *-derivation is a complex subspace. The second part of this note treats a problem in relation to the range of a generalized Jordan *-derivation.

On the range of a normal Jordan * -derivation

Lajos Molnár (1994)

Commentationes Mathematicae Universitatis Carolinae

In this note, by means of the spectrum of the generating operator, we characterize the self-adjointness and closedness of the range of a normal and a self-adjoint Jordan *-derivation, respectively.

Open projections in operator algebras I: Comparison theory

David P. Blecher, Matthew Neal (2012)

Studia Mathematica

We begin a program of generalizing basic elements of the theory of comparison, equivalence, and subequivalence, of elements in C*-algebras, to the setting of more general algebras. In particular, we follow the recent lead of Lin, Ortega, Rørdam, and Thiel of studying these equivalences, etc., in terms of open projections or module isomorphisms. We also define and characterize a new class of inner ideals in operator algebras, and develop a matching theory of open partial isometries in operator ideals...

Open projections in operator algebras II: Compact projections

David P. Blecher, Matthew Neal (2012)

Studia Mathematica

We generalize some aspects of the theory of compact projections relative to a C*-algebra, to the setting of more general algebras. Our main result is that compact projections are the decreasing limits of 'peak projections', and in the separable case compact projections are just the peak projections. We also establish new forms of the noncommutative Urysohn lemma relative to an operator algebra, and we show that a projection is compact iff the associated face in the state space of the algebra is...

Operator algebras

T. K. Carne (1979/1980)

Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")

Operators in finite distributive subspace lattices II

N. Spanoudakis (1994)

Studia Mathematica

In a previous paper we gave an example of a finite distributive subspace lattice ℒ on a Hilbert space and a rank two operator of Algℒ that cannot be written as a finite sum of rank one operators from Algℒ. The lattice ℒ was a specific realization of the free distributive lattice on three generators. In the present paper, which is a sequel to the aforementioned one, we study Algℒ for the general free distributive lattice with three generators (on a normed space). Necessary and sufficient conditions...

Order theory and interpolation in operator algebras

David P. Blecher, Charles John Read (2014)

Studia Mathematica

In earlier papers we have introduced and studied a new notion of positivity in operator algebras, with an eye to extending certain C*-algebraic results and theories to more general algebras. Here we continue to develop this positivity and its associated ordering, proving many foundational facts. We also give many applications, for example to noncommutative topology, noncommutative peak sets, lifting problems, peak interpolation, approximate identities, and to order relations between an operator...

Quasinormal operators are hyperreflexive

Kamila Kliś, Marek Ptak (2005)

Banach Center Publications

We will prove the statement in the title. We also give a better estimate for the hyperreflexivity constant for an analytic Toeplitz operator.

Reflexivity of isometries

Wing-Suet Li, John McCarthy (1997)

Studia Mathematica

We prove that any set of commuting isometries on a separable Hilbert space is reflexive.

Currently displaying 61 – 80 of 111