Previous Page 2

Displaying 21 – 28 of 28

Showing per page

Bounded elements and spectrum in Banach quasi *-algebras

Camillo Trapani (2006)

Studia Mathematica

A normal Banach quasi *-algebra (,) has a distinguished Banach *-algebra b consisting of bounded elements of . The latter *-algebra is shown to coincide with the set of elements of having finite spectral radius. If the family () of bounded invariant positive sesquilinear forms on contains sufficiently many elements then the Banach *-algebra of bounded elements can be characterized via a C*-seminorm defined by the elements of ().

Bounded elements in certain topological partial *-algebras

Jean-Pierre Antoine, Camillo Trapani, Francesco Tschinke (2011)

Studia Mathematica

We continue our study of topological partial *-algebras, focusing on the interplay between various partial multiplications. The special case of partial *-algebras of operators is examined first, in particular the link between strong and weak multiplications, on one hand, and invariant positive sesquilinear (ips) forms, on the other. Then the analysis is extended to abstract topological partial *-algebras, emphasizing the crucial role played by appropriate bounded elements, called ℳ-bounded. Finally,...

Bounded linear maps between (LF)-spaces.

Angela A. Albanese (2003)

RACSAM

Characterizations of pairs (E,F) of complete (LF)?spaces such that every continuous linear map from E to F maps a 0?neighbourhood of E into a bounded subset of F are given. The case of sequence (LF)?spaces is also considered. These results are similar to the ones due to D. Vogt in the case E and F are Fréchet spaces. The research continues work of J. Bonet, A. Galbis, S. Önal, T. Terzioglu and D. Vogt.

Currently displaying 21 – 28 of 28

Previous Page 2