The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 621 – 640 of 780

Showing per page

Results on Non-resonant Oscillations for some Nonlinear Vector Fourth Order Differential Systems

Awar Simon Ukpera, Olufemi Adeyinka Adesina (2012)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

This paper presents vector versions of some existence results recently published for certain fourth order differential systems based on generalisations drawn from possibilities arising from the underlying auxiliary equation. The results obtained also extend some known works involving third order differential systems to the corresponding fourth order.

Retractions onto the Space of Continuous Divergence-free Vector Fields

Philippe Bouafia (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

We prove that there does not exist a uniformly continuous retraction from the space of continuous vector fields onto the subspace of vector fields whose divergence vanishes in the distributional sense. We then generalise this result using the concept of m -charges, introduced by De Pauw, Moonens, and Pfeffer: on any subset X n satisfying a mild geometric condition, there is no uniformly continuous representation operator for m -charges in X .

Retracts, fixed point index and differential equations.

Rafael Ortega (2008)

RACSAM

Some problems in differential equations evolve towards Topology from an analytical origin. Two such problems will be discussed: the existence of solutions asymptotic to the equilibrium and the stability of closed orbits of Hamiltonian systems. The theory of retracts and the fixed point index have become useful tools in the study of these questions.

Rough paths via sewing Lemma

Laure Coutin (2012)

ESAIM: Probability and Statistics

We present the rough path theory introduced by Lyons, using the swewing lemma of Feyel and de Lapradelle.

Schrödinger Operator on the Zigzag Half-Nanotube in Magnetic Field

A. Iantchenko, E. Korotyaev (2010)

Mathematical Modelling of Natural Phenomena

We consider the zigzag half-nanotubes (tight-binding approximation) in a uniform magnetic field which is described by the magnetic Schrödinger operator with a periodic potential plus a finitely supported perturbation. We describe all eigenvalues and resonances of this operator, and theirs dependence on the magnetic field. The proof is reduced to the analysis of the periodic Jacobi operators on the half-line with finitely supported perturbations.

Second order boundary value problems with sign-changing nonlinearities and nonhomogeneous boundary conditions

John R. Graef, Lingju Kong, Qingkai Kong, Bo Yang (2011)

Mathematica Bohemica

The authors consider the boundary value problem with a two-parameter nonhomogeneous multi-point boundary condition u ' ' + g ( t ) f ( t , u ) = 0 , t ( 0 , 1 ) , u ( 0 ) = α u ( ξ ) + λ , u ( 1 ) = β u ( η ) + μ . C r i t e r i a f o r t h e e x i s t e n c e o f n o n t r i v i a l s o l u t i o n s o f t h e p r o b l e m a r e e s t a b l i s h e d . T h e n o n l i n e a r t e r m f ( t , x ) m a y t a k e n e g a t i v e v a l u e s a n d m a y b e u n b o u n d e d f r o m b e l o w . C o n d i t i o n s a r e d e t e r m i n e d b y t h e r e l a t i o n s h i p b e t w e e n t h e b e h a v i o r o f f ( t , x ) / x f o r x n e a r 0 a n d ± , a n d t h e s m a l l e s t p o s i t i v e c h a r a c t e r i s t i c v a l u e o f a n a s s o c i a t e d l i n e a r i n t e g r a l o p e r a t o r . T h e a n a l y s i s m a i n l y r e l i e s o n t o p o l o g i c a l d e g r e e t h e o r y . T h i s w o r k c o m p l e m e n t s s o m e r e c e n t r e s u l t s i n t h e l i t e r a t u r e . T h e r e s u l t s a r e i l l u s t r a t e d w i t h e x a m p l e s .

Second order BVPs with state dependent impulses via lower and upper functions

Irena Rachůnková, Jan Tomeček (2014)

Open Mathematics

The paper deals with the following second order Dirichlet boundary value problem with p ∈ ℕ state-dependent impulses: z″(t) = f (t,z(t)) for a.e. t ∈ [0, T], z(0) = z(T) = 0, z′(τ i+) − z′(τ i−) = I i(τ i, z(τ i)), τ i = γ i(z(τ i)), i = 1,..., p. Solvability of this problem is proved under the assumption that there exists a well-ordered couple of lower and upper functions to the corresponding Dirichlet problem without impulses.

Second order nonlinear differential equations with linear impulse and periodic boundary conditions

Aydin Huseynov (2011)

Applications of Mathematics

In this study, we establish existence and uniqueness theorems for solutions of second order nonlinear differential equations on a finite interval subject to linear impulse conditions and periodic boundary conditions. The results obtained yield periodic solutions of the corresponding periodic impulsive nonlinear differential equation on the whole real axis.

Semigroup Analysis of Structured Parasite Populations

J. Z. Farkas, D. M. Green, P. Hinow (2010)

Mathematical Modelling of Natural Phenomena

Motivated by structured parasite populations in aquaculture we consider a class of size-structured population models, where individuals may be recruited into the population with distributed states at birth. The mathematical model which describes the evolution of such a population is a first-order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral...

Semigroups generated by convex combinations of several Feller generators in models of mathematical biology

Adam Bobrowski, Radosław Bogucki (2008)

Studia Mathematica

Let be a locally compact Hausdorff space. Let A i , i = 0,1,...,N, be generators of Feller semigroups in C₀() with related Feller processes X i = X i ( t ) , t 0 and let α i , i = 0,...,N, be non-negative continuous functions on with i = 0 N α i = 1 . Assume that the closure A of k = 0 N α k A k defined on i = 0 N ( A i ) generates a Feller semigroup T(t), t ≥ 0 in C₀(). A natural interpretation of a related Feller process X = X(t), t ≥ 0 is that it evolves according to the following heuristic rules: conditional on being at a point p ∈ , with probability α i ( p ) , the process...

Currently displaying 621 – 640 of 780