Formulation mixte d'un problème de jonctions de poutres adaptée à la résolution d'un problème d'optimisation
General algorithm and sensitivity analysis for variational inequalities.
Geometric control approach to synthesis theory.
Growth model with migration: structure of optimal saving rates
High order necessary optimality conditions.
High-order angles in almost-Riemannian geometry
Let and be two smooth vector fields on a two-dimensional manifold . If and are everywhere linearly independent, then they define a Riemannian metric on (the metric for which they are orthonormal) and they give to the structure of metric space. If and become linearly dependent somewhere on , then the corresponding Riemannian metric has singularities, but under generic conditions the metric structure is still well defined. Metric structures that can be defined locally in this way...
How humans fly
This paper is devoted to the general problem of reconstructing the cost from the observation of trajectories, in a problem of optimal control. It is motivated by the following applied problem, concerning HALE drones: one would like them to decide by themselves for their trajectories, and to behave at least as a good human pilot. This applied question is very similar to the problem of determining what is minimized in human locomotion. These starting points are the reasons for the particular classes...
How to state necessary optimality conditions for control problems with deviating arguments?
The aim of this paper is to give a general idea to state optimality conditions of control problems in the following form: , (1) where is a set of admissible controls and is the solution of the following equation: ; . (2). The results are nonlocal and new.
Identification problem for nonlinear beam -- extension for different types of boundary conditions
Identification problem is a framework of mathematical problems dealing with the search for optimal values of the unknown coefficients of the considered model. Using experimentally measured data, the aim of this work is to determine the coefficients of the given differential equation. This paper deals with the extension of the continuous dependence results for the Gao beam identification problem with different types of boundary conditions by using appropriate analytical inequalities with a special...
Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections
We establish a Large Deviations Principle for diffusions with Lipschitz continuous oblique reflections on regular domains. The rate functional is given as the value function of a control problem and is proved to be good. The proof is based on a viscosity solution approach. The idea consists in interpreting the probabilities as the solutions to some PDEs, make the logarithmic transform, pass to the limit, and then identify the action functional as the solution of the limiting equation.
Limit problems in optimal control theory
Magnetization switching on small ferromagnetic ellipsoidal samples
The study of small magnetic particles has become a very important topic, in particular for the development of technological devices such as those used for magnetic recording. In this field, switching the magnetization inside the magnetic sample is of particular relevance. We here investigate mathematically this problem by considering the full partial differential model of Landau-Lifschitz equations triggered by a uniform (in space) external magnetic field.
Magnetization switching on small ferromagnetic ellipsoidal samples
The study of small magnetic particles has become a very important topic, in particular for the development of technological devices such as those used for magnetic recording. In this field, switching the magnetization inside the magnetic sample is of particular relevance. We here investigate mathematically this problem by considering the full partial differential model of Landau-Lifschitz equations triggered by a uniform (in space) external magnetic field.
Maxwell strata in sub-Riemannian problem on the group of motions of a plane
The left-invariant sub-Riemannian problem on the group of motions of a plane is considered. Sub-Riemannian geodesics are parameterized by Jacobi's functions. Discrete symmetries of the problem generated by reflections of pendulum are described. The corresponding Maxwell points are characterized, on this basis an upper bound on the cut time is obtained.
Mean-Field Optimal Control
We introduce the concept of mean-field optimal control which is the rigorous limit process connecting finite dimensional optimal control problems with ODE constraints modeling multi-agent interactions to an infinite dimensional optimal control problem with a constraint given by a PDE of Vlasov-type, governing the dynamics of the probability distribution of interacting agents. While in the classical mean-field theory one studies the behavior of a large number of small individuals freely interacting...
Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet
Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet
Consider a sub-riemannian geometry(U,D,g) where U is a neighborhood of 0 in R3, D is a Martinet type distribution identified to ker ω, ω being the 1-form: , q=(x,y,z) and g is a metric on D which can be taken in the normal form: , a=1+yF(q), c=1+G(q), . In a previous article we analyze the flat case: a=c=1; we describe the conjugate and cut loci, the sphere and the wave front. The objectif of this article is to provide a geometric and computational framework to analyze the general case....
Métriques sous-riemanniennes de quasi-contact : forme normale et caustique
Minimax optimal control problems. Numerical analysis of the finite horizon case