Displaying 341 – 360 of 397

Showing per page

The SQP method for control constrained optimal control of the Burgers equation

Fredi Tröltzsch, Stefan Volkwein (2001)

ESAIM: Control, Optimisation and Calculus of Variations

A Lagrange–Newton–SQP method is analyzed for the optimal control of the Burgers equation. Distributed controls are given, which are restricted by pointwise lower and upper bounds. The convergence of the method is proved in appropriate Banach spaces. This proof is based on a weak second-order sufficient optimality condition and the theory of Newton methods for generalized equations in Banach spaces. For the numerical realization a primal-dual active set strategy is applied. Numerical examples are...

The SQP method for control constrained optimal control of the Burgers equation

Fredi Tröltzsch, Stefan Volkwein (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A Lagrange–Newton–SQP method is analyzed for the optimal control of the Burgers equation. Distributed controls are given, which are restricted by pointwise lower and upper bounds. The convergence of the method is proved in appropriate Banach spaces. This proof is based on a weak second-order sufficient optimality condition and the theory of Newton methods for generalized equations in Banach spaces. For the numerical realization a primal-dual active set strategy is applied. Numerical examples are...

Time optimal control of the heat equation with pointwise control constraints

Karl Kunisch, Lijuan Wang (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Time optimal control problems for an internally controlled heat equation with pointwise control constraints are studied. By Pontryagin’s maximum principle and properties of nontrivial solutions of the heat equation, we derive a bang-bang property for time optimal control. Using the bang-bang property and establishing certain connections between time and norm optimal control problems for the heat equation, necessary and sufficient conditions for the optimal time and the optimal control are obtained....

Time-optimal boundary control of a parabolic system with time lags given in integral form

Adam Kowalewski, Anna Krakowiak (2006)

International Journal of Applied Mathematics and Computer Science

In this paper, the time-optimal boundary control problem for a distributed parabolic system in which time lags appear in integral form in both the state equation and the boundary condition is presented. Some particular properties of optimal control are discussed.

Time-optimal boundary control of an infinite order parabolic system with time lags

Adam Kowalewski, Anna Krakowiak (2008)

International Journal of Applied Mathematics and Computer Science

In this paper the time-optimal boundary control problem is presented for a distributed infinite order parabolic system in which time lags appear in the integral form both in the state equation and in the boundary condition. Some specific properties of the optimal control are discussed.

Time-optimal control of infinite order hyperbolic systems with time delays

Adam Kowalewski (2009)

International Journal of Applied Mathematics and Computer Science

In this paper, the time-optimal control problem for infinite order hyperbolic systems in which time delays appear in the integral form both in state equations and in boundary conditions is considered. Optimal controls are characterized in terms of an adjoint system and shown to be unique and bang-bang. These results extend to certain cases of nonlinear control problems. The particular properties of optimal control are discussed.

Tykhonov well-posedness of a heat transfer problem with unilateral constraints

Mircea Sofonea, Domingo A. Tarzia (2022)

Applications of Mathematics

We consider an elliptic boundary value problem with unilateral constraints and subdifferential boundary conditions. The problem describes the heat transfer in a domain D d and its weak formulation is in the form of a hemivariational inequality for the temperature field, denoted by 𝒫 . We associate to Problem 𝒫 an optimal control problem, denoted by 𝒬 . Then, using appropriate Tykhonov triples, governed by a nonlinear operator G and a convex K ˜ , we provide results concerning the well-posedness of problems...

Un algorithme d'identification de frontières soumises à des conditions aux limites de Signorini

Slim Chaabane, Mohamed Jaoua (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This work deals with a non linear inverse problem of reconstructing an unknown boundary γ, the boundary conditions prescribed on γ being of Signorini type, by using boundary measurements. The problem is turned into an optimal shape design one, by constructing a Kohn & Vogelius-like cost function, the only minimum of which is proved to be the unknown boundary. Furthermore, we prove that the derivative of this cost function with respect to a direction θ depends only on the state u0, and not...

Un risultato di perturbazione per una classe di problemi ellittici variazionali di tipo superlineare

Luisa Di Piazza (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considera il problema al contorno - Δ u = f ( x , u ) + ϵ ψ ( x , u ) in Ω , u | Ω = 0 , dove Ω n è un aperto limitato e connesso ed ϵ è un parametro reale. Si prova che, se f ( x , s ) + ϵ ψ ( x , s ) è «superlineare» ed ϵ è abbastanza piccolo, il problema precedente ha almeno tre soluzioni distinte.

Uncertain input data problems and the worst scenario method

Ivan Hlaváček (2007)

Applications of Mathematics

An introduction to the worst scenario method is given. We start with an example and a general abstract scheme. An analysis of the method both on the continuous and approximate levels is discussed. We show a possible incorporation of the method into the fuzzy set theory. Finally, we present a survey of applications published during the last decade.

Currently displaying 341 – 360 of 397