On the generalized nonlinear quasivariational inclusions
New contributions concerning the minimal displacement of points under mappings (defect of fixed point) are obtained.
An optimization problem for the unilateral contact between a pseudoplate and a rigid obstacle is considered. The variable thickness of the pseudoplate plays the role of a control variable. The cost functional is a regular functional only in the smooth case. The existence of an optimal thickness is verified. The penalized optimal control problem is considered in the general case.
We study the flat region of stationary points of the functional under the constraint , where is a bounded domain in . Here is a function which is concave for small and convex for large, and is a given constant. The problem generalizes the classical minimal resistance body problems considered by Newton. We construct a family of partially flat radial solutions to the associated stationary problem when is a ball. We also analyze some other qualitative properties. Moreover, we show the...
The Signorini problem with friction in quasi-coupled linear thermo-elasticity (the 2D-case) is discussed. The problem is the model problem in the geodynamics. Using piecewise linear finite elements on the triangulation of the given domain, numerical procedures are proposed. The finite element analysis for the Signorini problem with friction on the contact boundary of a polygonal domain is given. The rate of convergence is proved if the exact solution is sufficiently regular.
In this paper the solution of a finite element approximation of a linear obstacle plate problem is investigated. A simple version of an interior point method and a block pivoting algorithm have been proposed for the solution of this problem. Special purpose implementations of these procedures are included and have been used in the solution of a set of test problems. The results of these experiences indicate that these procedures are quite efficient to deal with these instances and compare favourably...
Vengono trattati due problemi di Stefan con la specificazione dell'energia. Dapprima si fornisce una formulazione debole di un problema unidimensionale ad una fase studiato in [4]: si dimostra un risultato di esistenza. In seguito si considera un problema di Stefan pluridimensionale e multifase in cui viene assegnata l'energia totale del sistema ad ogni istante; si mostra l’esistenza e l’unicità della soluzione per due formulazioni provando inoltre l’equivalenza fra queste.