Bang-bang control of a second-order non-linear stable plant with fourth- order nonlinearity
We prove some results in the context of isoperimetric inequalities with quantitative terms. In the -dimensional case, our main contribution is a method for determining the optimal coefficients in the inequality , valid for each Borel set with positive and finite area, with and being, respectively, the and the of . In dimensions, besides proving existence and regularity properties of minimizers for a wide class of including the lower semicontinuous extension of , we describe the...
It is proved that, as in three-dimensional elasticity, Betti's theorem represents a criterion for the existence of a stored-energy function for a Cosserat elastic shell.
Variational inequalities are studied, where is a closed convex cone in , , is a matrix, is a small perturbation, a real parameter. The assumptions guaranteeing a Hopf bifurcation at some for the corresponding equation are considered and it is proved that then, in some situations, also a bifurcation of periodic solutions to our inequality occurs at some . Bifurcating solutions are obtained by the limiting process along branches of solutions to penalty problems starting at constructed...
Bifurcation and eigenvalue theorems are proved for a certain type of quasivariational inequalities using the method of a jump in the Leray-Schauder degree.
In this article, the homogenization process of periodic structures is analyzed using Bloch waves in the case of system of linear elasticity in three dimensions. The Bloch wave method for homogenization relies on the regularity of the lower Bloch spectrum. For the three dimensional linear elasticity system, the first eigenvalue is degenerate of multiplicity three and hence existence of such a regular Bloch spectrum is not guaranteed. The aim here is to develop all necessary spectral tools to overcome...
In this article, the homogenization process of periodic structures is analyzed using Bloch waves in the case of system of linear elasticity in three dimensions. The Bloch wave method for homogenization relies on the regularity of the lower Bloch spectrum. For the three dimensional linear elasticity system, the first eigenvalue is degenerate of multiplicity three and hence existence of such a regular Bloch spectrum is not guaranteed. The aim here is to develop all necessary spectral tools to overcome...
A new hybrid of block-pulse functions and Boubaker polynomials is constructed to solve the inequality constrained fractional optimal control problems (FOCPs) with quadratic performance index and fractional variational problems (FVPs). First, the general formulation of the Riemann-Liouville integral operator for Boubaker hybrid function is presented for the first time. Then it is applied to reduce the problems to optimization problems, which can be solved by the existing method. In this way we find...