Page 1 Next

Displaying 1 – 20 of 155

Showing per page

Economic equilibrium through variational inequalities

Magdalena Nockowska-Rosiak (2009)

Applicationes Mathematicae

The purpose of this paper is to present an alternative proof of the existence of the Walrasian equilibrium for the Arrow-Debreu-McKenzie model by the variational inequality technique. Moreover, examples of the generalized Arrow-Debreu-McKenzie model are given in which the price vector can reach the boundary of the orthant allowing a commodity to be of price zero at equilibrium. In such a case its supply exceeds demand. It is worth mentioning that utility functions in this model are allowed not to...

Effective energy integral functionals for thin films with bending moment in the Orlicz-Sobolev space setting

Włodzimierz Laskowski, Hôǹg Thái Nguyêñ (2014)

Banach Center Publications

In this paper we deal with the energy functionals for the elastic thin film ω ⊂ ℝ² involving the bending moments. The effective energy functional is obtained by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type and to satisfy the conditions Δ₂ and...

Effective energy integral functionals for thin films with three dimensional bending moment in the Orlicz-Sobolev space setting

Włodzimierz Laskowski, Hong Thai Nguyen (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we consider an elastic thin film ω ⊂ ℝ² with the bending moment depending also on the third thickness variable. The effective energy functional defined on the Orlicz-Sobolev space over ω is described by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type...

Ekeland's variational principle in Fréchet spaces and the density of extremal points

J. H. Qiu (2005)

Studia Mathematica

By modifying the method of Phelps, we obtain a new version of Ekeland's variational principle in the framework of Fréchet spaces, which admits a very general form of perturbations. Moreover we give a density result concerning extremal points of lower semicontinuous functions on Fréchet spaces. Even in the framework of Banach spaces, our result is a proper improvement of the related known result. From this, we derive a new version of Caristi's fixed point theorem and a density result for Caristi...

Ekeland's variational principle in locally p-convex spaces and related results

J. H. Qiu, S. Rolewicz (2008)

Studia Mathematica

In the framework of locally p-convex spaces, two versions of Ekeland's variational principle and two versions of Caristi's fixed point theorem are given. It is shown that the four results are mutually equivalent. Moreover, by using the local completeness theory, a p-drop theorem in locally p-convex spaces is proven.

Enlarged Asymptotic Compensation in Discrete Distributed Systems

L. Afifi, M. Hakam, M. Bahadi, A. El Jai (2010)

Mathematical Modelling of Natural Phenomena

This work concerns an enlarged analysis of the problem of asymptotic compensation for a class of discrete linear distributed systems. We study the possibility of asymptotic compensation of a disturbance by bringing asymptotically the observation in a given tolerance zone 𝒞. Under convenient hypothesis, we show the existence and the unicity of the optimal control ensuring this compensation and we give its characterization

Enlarged exact compensation in distributed systems

Larbi Afifi, Abdelhakim Chafiai, Abdelaziz Bel Fekih (2002)

International Journal of Applied Mathematics and Computer Science

In this work, we examine, through the observation of a class of linear distributed systems, the possibility of reducing the effect of disturbances (pollution, etc.), by making observations within a given margin of tolerance using a control term. This problem is called enlarged exact remediability. We show that with a convenient choice of input and output operators (actuators and sensors, respectively), the considered control problem has a unique optimal solution, which will be given. We also study...

Currently displaying 1 – 20 of 155

Page 1 Next