The search session has expired. Please query the service again.
Displaying 21 –
40 of
156
We consider the problem of minimizing the max of two convex functions
from both approximation and sensitivity point of view.This lead up to study
the epiconvergence of a sequence of level sums of convex functions and the related
dual problems.
3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients bounded in Here it is shown that, up to a subsequence, may be decomposed as where carries all the concentration effects, i.e. is equi-integrable, and captures the oscillatory behavior, i.e. in measure. In addition, if is a recovering sequence then nearby
3D-2D asymptotic analysis for thin structures rests on the mastery
of scaled gradients bounded in Here it is shown that, up to a
subsequence, may be decomposed as
where carries all the concentration effects, i.e. is
equi-integrable, and captures the oscillatory behavior,
i.e. in measure. In addition, if is
a recovering sequence then nearby
Sufficient conditions for an equilibrium of maximal monotone operator to be in a given set are provided. This partially answers to a question posed in [10].
We consider a class of variational
problems for differential inclusions, related to the
control of wild fires. The area burned by the fire at time t> 0
is modelled as the reachable set for
a differential inclusion ∈F(x), starting from
an initial set R0. To block the fire, a barrier can be constructed
progressively in time. For each t> 0, the portion of the wall constructed
within time t is described by a rectifiable set
γ(t) ⊂. In this paper
we show that the search
for blocking strategies...
A linear-quadratic control problem with an infinite time horizon for some infinite dimensional controlled stochastic differential equations driven by a fractional Brownian motion is formulated and solved. The feedback form of the optimal control and the optimal cost are given explicitly. The optimal control is the sum of the well known linear feedback control for the associated infinite dimensional deterministic linear-quadratic control problem and a suitable prediction of the adjoint optimal system...
The finite element approximation of optimal control problems for
semilinear elliptic partial differential equation is considered,
where the control belongs to a finite-dimensional set and state
constraints are given in finitely many points of the domain. Under
the standard linear independency condition on the active gradients
and a strong second-order sufficient optimality condition, optimal
error estimates are derived for locally optimal controls.
Currently displaying 21 –
40 of
156