Displaying 21 – 40 of 155

Showing per page

Equi-integrability results for 3D-2D dimension reduction problems

Marian Bocea, Irene Fonseca (2002)

ESAIM: Control, Optimisation and Calculus of Variations

3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients α u ε | 1 ε 3 u ε bounded in L p ( Ω ; 9 ) , 1 < p < + . Here it is shown that, up to a subsequence, u ε may be decomposed as w ε + z ε , where z ε carries all the concentration effects, i.e. α w ε | 1 ε 3 w ε p is equi-integrable, and w ε captures the oscillatory behavior, i.e. z ε 0 in measure. In addition, if { u ε } is a recovering sequence then z ε = z ε ( x α ) nearby Ω .

Equi-integrability results for 3D-2D dimension reduction problems

Marian Bocea, Irene Fonseca (2010)

ESAIM: Control, Optimisation and Calculus of Variations

3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients α u ε | 1 ε 3 u ε bounded in L p ( Ω ; 9 ) , 1 < p < + . Here it is shown that, up to a subsequence, u ε may be decomposed as w ε + z ε , where z ε carries all the concentration effects, i.e. α w ε | 1 ε 3 w ε p is equi-integrable, and w ε captures the oscillatory behavior, i.e. z ε 0 in measure. In addition, if { u ε } is a recovering sequence then z ε = z ε ( x α ) nearby Ω .

Equilibrium of maximal monotone operator in a given set

Dariusz Zagrodny (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Sufficient conditions for an equilibrium of maximal monotone operator to be in a given set are provided. This partially answers to a question posed in [10].

Equivalent formulation and numerical analysis of a fire confinement problem

Alberto Bressan, Tao Wang (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a class of variational problems for differential inclusions, related to the control of wild fires. The area burned by the fire at time t> 0 is modelled as the reachable set for a differential inclusion x ˙ ∈F(x), starting from an initial set R0. To block the fire, a barrier can be constructed progressively in time. For each t> 0, the portion of the wall constructed within time t is described by a rectifiable set γ(t) ⊂ 2 . In this paper we show that the search for blocking strategies...

Ergodic control of linear stochastic equations in a Hilbert space with fractional Brownian motion

Tyrone E. Duncan, B. Maslowski, B. Pasik-Duncan (2015)

Banach Center Publications

A linear-quadratic control problem with an infinite time horizon for some infinite dimensional controlled stochastic differential equations driven by a fractional Brownian motion is formulated and solved. The feedback form of the optimal control and the optimal cost are given explicitly. The optimal control is the sum of the well known linear feedback control for the associated infinite dimensional deterministic linear-quadratic control problem and a suitable prediction of the adjoint optimal system...

Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space

Pedro Merino, Fredi Tröltzsch, Boris Vexler (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The finite element approximation of optimal control problems for semilinear elliptic partial differential equation is considered, where the control belongs to a finite-dimensional set and state constraints are given in finitely many points of the domain. Under the standard linear independency condition on the active gradients and a strong second-order sufficient optimality condition, optimal error estimates are derived for locally optimal controls.

Currently displaying 21 – 40 of 155