Displaying 241 – 260 of 2372

Showing per page

All-at-once preconditioning in PDE-constrained optimization

Tyrone Rees, Martin Stoll, Andy Wathen (2010)

Kybernetika

The optimization of functions subject to partial differential equations (PDE) plays an important role in many areas of science and industry. In this paper we introduce the basic concepts of PDE-constrained optimization and show how the all-at-once approach will lead to linear systems in saddle point form. We will discuss implementation details and different boundary conditions. We then show how these system can be solved efficiently and discuss methods and preconditioners also in the case when bound...

A-monotone nonlinear relaxed cocoercive variational inclusions

Ram Verma (2007)

Open Mathematics

Based on the notion of A - monotonicity, a new class of nonlinear variational inclusion problems is presented. Since A - monotonicity generalizes H - monotonicity (and in turn, generalizes maximal monotonicity), results thus obtained, are general in nature.

An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints

Michael Kieweg, Yuri Iliash, Ronald H. W. Hoppe, Michael Hintermüller (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator...

An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints

Michael Hintermüller, Ronald H.W. Hoppe, Yuri Iliash, Michael Kieweg (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator...

An active set strategy based on the augmented Lagrangian formulation for image restoration

Kazufumi Ito, Karl Kunisch (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Lagrangian and augmented Lagrangian methods for nondifferentiable optimization problems that arise from the total bounded variation formulation of image restoration problems are analyzed. Conditional convergence of the Uzawa algorithm and unconditional convergence of the first order augmented Lagrangian schemes are discussed. A Newton type method based on an active set strategy defined by means of the dual variables is developed and analyzed. Numerical examples for blocky signals and images perturbed by...

An approximation theorem for sequences of linear strains and its applications

Kewei Zhang (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in L 1 by the sequence of linear strains of mapping bounded in Sobolev space W 1 , p . We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.

An approximation theorem for sequences of linear strains and its applications

Kewei Zhang (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in L1 by the sequence of linear strains of mapping bounded in Sobolev space W1,p . We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.

An elementary proof of Marcellini Sbordone semicontinuity theorem

Tomáš G. Roskovec, Filip Soudský (2023)

Kybernetika

The weak lower semicontinuity of the functional F ( u ) = Ω f ( x , u , u ) d x is a classical topic that was studied thoroughly. It was shown that if the function f is continuous and convex in the last variable, the functional is sequentially weakly lower semicontinuous on W 1 , p ( Ω ) . However, the known proofs use advanced instruments of real and functional analysis. Our aim here is to present a proof understandable even for students familiar only with the elementary measure theory.

Currently displaying 241 – 260 of 2372