Alternating Iteration and Elliptic Variational Inequalities.
Based on the notion of A - monotonicity, a new class of nonlinear variational inclusion problems is presented. Since A - monotonicity generalizes H - monotonicity (and in turn, generalizes maximal monotonicity), results thus obtained, are general in nature.
We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator...
We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator...
Lagrangian and augmented Lagrangian methods for nondifferentiable optimization problems that arise from the total bounded variation formulation of image restoration problems are analyzed. Conditional convergence of the Uzawa algorithm and unconditional convergence of the first order augmented Lagrangian schemes are discussed. A Newton type method based on an active set strategy defined by means of the dual variables is developed and analyzed. Numerical examples for blocky signals and images perturbed by...
In this paper the contact problem for a cylindrical shell and a stiff punch is studied. The existence and uniqueness of a solution is verified. The finite element method is discussed.
We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in by the sequence of linear strains of mapping bounded in Sobolev space . We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.
We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in L1 by the sequence of linear strains of mapping bounded in Sobolev space W1,p . We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.
The weak lower semicontinuity of the functional is a classical topic that was studied thoroughly. It was shown that if the function is continuous and convex in the last variable, the functional is sequentially weakly lower semicontinuous on . However, the known proofs use advanced instruments of real and functional analysis. Our aim here is to present a proof understandable even for students familiar only with the elementary measure theory.
We establish the existence of a solution to the Neumann problem in the half-space with a subcritical nonlinearity on the boundary. Solutions are obtained through the constrained minimization or minimax. The existence of solutions depends on the shape of a boundary coefficient.
We prove by giving an example that when the asymptotic behavior of functionals is quite different with respect to the planar case. In particular we show that the one-dimensional ansatz due to Aviles and Giga in the planar case (see [2]) is no longer true in higher dimensions.