Displaying 41 – 60 of 147

Showing per page

Commutative neutrix convolution products of functions

Brian Fisher, Adem Kiliçman (1994)

Commentationes Mathematicae Universitatis Carolinae

The commutative neutrix convolution product of the functions x r e - λ x and x s e + μ x is evaluated for r , s = 0 , 1 , 2 , ... and all λ , μ . Further commutative neutrix convolution products are then deduced.

Compactness of Special Functions of Bounded Higher Variation

Luigi Ambrosio, Francesco Ghiraldin (2013)

Analysis and Geometry in Metric Spaces

Given an open set Ω ⊂ Rm and n > 1, we introduce the new spaces GBnV(Ω) of Generalized functions of bounded higher variation and GSBnV(Ω) of Generalized special functions of bounded higher variation that generalize, respectively, the space BnV introduced by Jerrard and Soner in [43] and the corresponding SBnV space studied by De Lellis in [24]. In this class of spaces, which allow as in [43] the description of singularities of codimension n, the distributional jacobian Ju need not have finite...

Completely generalized nonlinear variational inclusions for fuzzy mappings

Nan-jing Huang (1999)

Czechoslovak Mathematical Journal

In this paper, we introduce and study a new class of completely generalized nonlinear variational inclusions for fuzzy mappings and construct some new iterative algorithms. We prove the existence of solutions for this kind of completely generalized nonlinear variational inclusions and the convergence of iterative sequences generated by the algorithms.

Complex calculus of variations

Michel Gondran, Rita Hoblos Saade (2003)

Kybernetika

In this article, we present a detailed study of the complex calculus of variations introduced in [M. Gondran: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I]. This calculus is analogous to the conventional calculus of variations, but is applied here to 𝐂 n functions in 𝐂 . It is based on new concepts involving the minimum and convexity of a complex function. Such an approach allows us to propose explicit solutions...

Conical differentiability for bone remodeling contact rod models

Isabel N. Figueiredo, Carlos F. Leal, Cecília S. Pinto (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement...

Conical differentiability for bone remodeling contact rod models

Isabel N. Figueiredo, Carlos F. Leal, Cecília S. Pinto (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement constraint...

Currently displaying 41 – 60 of 147