Fritz John's type conditions and associated duality forms in convex non differentiable vector-optimization
In matricial analysis, the theorem of Eckart and Young provides a best approximation of an arbitrary matrix by a matrix of rank at most r. In variational analysis or optimization, the Moreau envelopes are appropriate ways of approximating or regularizing the rank function. We prove here that we can go forwards and backwards between the two procedures, thereby showing that they carry essentially the same information.
Initially, second-order necessary optimality conditions and sufficient optimality conditions in terms of Hadamard type derivatives for the unconstrained scalar optimization problem , , are given. These conditions work with arbitrary functions , but they show inconsistency with the classical derivatives. This is a base to pose the question whether the formulated optimality conditions remain true when the “inconsistent” Hadamard derivatives are replaced with the “consistent” Dini derivatives. It...
We describe a general axiomatic way to define functions of class Ck, k ∈ N∪{∞} on topological abelian groups. In the category of Banach spaces, this definition coincides with the usual one. The advantage of this axiomatic approach is that one can dispense with the notion of norms and limit procedures. The disadvantage is that one looses the derivative, which is replaced by a local linearizing factor. As an application we use this approach to define C∞ functions in the setting of graded/super manifolds....
We study a class of functions which differ essentially from those which are the sum of a convex function and a regular one and which have interesting properties related to -convergence and to problems with non-convex constraints. In particular some results are given for the associated evolution equations.
La semiconcavità è una nozione che generalizza quella di concavità conservandone la maggior parte delle proprietà ma permettendo di ampliarne le applicazioni. Questa è una rassegna dei punti più salienti della teoria delle funzioni semiconcave, con particolare riguardo allo studio dei loro insiemi singolari. Come applicazione, si discuterà una formula di rappresentazione per la soluzione di un modello dinamico per la materia granulare.