Displaying 41 – 60 of 110

Showing per page

The relaxation of the Signorini problem for polyconvex functionals with linear growth at infinity

Jarosław L. Bojarski (2005)

Applicationes Mathematicae

The aim of this paper is to study the unilateral contact condition (Signorini problem) for polyconvex functionals with linear growth at infinity. We find the lower semicontinuous relaxation of the original functional (defined over a subset of the space of bounded variations BV(Ω)) and we prove the existence theorem. Moreover, we discuss the Winkler unilateral contact condition. As an application, we show a few examples of elastic-plastic potentials for finite displacements.

The second order optimality conditions for nonlinear mathematical programming with C 1 , 1 data

Liping Liu, Michal Křížek (1997)

Applications of Mathematics

To find nonlinear minimization problems are considered and standard C 2 -regularity assumptions on the criterion function and constrained functions are reduced to C 1 , 1 -regularity. With the aid of the generalized second order directional derivative for C 1 , 1 real-valued functions, a new second order necessary optimality condition and a new second order sufficient optimality condition for these problems are derived.

The SQP method for control constrained optimal control of the Burgers equation

Fredi Tröltzsch, Stefan Volkwein (2001)

ESAIM: Control, Optimisation and Calculus of Variations

A Lagrange–Newton–SQP method is analyzed for the optimal control of the Burgers equation. Distributed controls are given, which are restricted by pointwise lower and upper bounds. The convergence of the method is proved in appropriate Banach spaces. This proof is based on a weak second-order sufficient optimality condition and the theory of Newton methods for generalized equations in Banach spaces. For the numerical realization a primal-dual active set strategy is applied. Numerical examples are...

The SQP method for control constrained optimal control of the Burgers equation

Fredi Tröltzsch, Stefan Volkwein (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A Lagrange–Newton–SQP method is analyzed for the optimal control of the Burgers equation. Distributed controls are given, which are restricted by pointwise lower and upper bounds. The convergence of the method is proved in appropriate Banach spaces. This proof is based on a weak second-order sufficient optimality condition and the theory of Newton methods for generalized equations in Banach spaces. For the numerical realization a primal-dual active set strategy is applied. Numerical examples are...

Currently displaying 41 – 60 of 110