The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
390
In this paper, we study the motion planning problem for generic sub-riemannian metrics of co-rank one. We give explicit expressions for the metric complexity (in the sense of Jean [10, 11]), in terms of the elementary invariants of the problem. We construct asymptotic optimal syntheses. It turns out that among the results we show, the most complicated case is the 3-dimensional. Besides the generic case, we study some non-generic generalizations in the analytic case.
In this paper, we study the motion planning problem for
generic sub-Riemannian metrics of co-rank one. We give explicit
expressions for the metric complexity (in the sense of Jean
[CITE]), in terms of the elementary invariants of
the problem. We construct asymptotic optimal syntheses. It turns out
that among the results we show, the most complicated case is the
3-dimensional. Besides the generic C∞ case, we study some
non-generic generalizations in the analytic case.
One establishes some convexity criteria for sets in . They will be applied in a further Note to treat the existence of solutions to minimum time problems for certain Lagrangian systems referred to two coordinates, one of which is used as a control. These problems regard the swing or the ski.
This Note is the Part II of a previous Note with the same title. One refers to holonomic systems with two degrees of freedom, where the part can schemetize a swing or a pair of skis and schemetizes whom uses . The behaviour of is characterized by a coordinate used as a control. Frictions and air resistance are neglected. One considers on minimum time problems and one is interested in the existence of solutions. To this aim one determines a certain structural condition which implies...
We study convergence properties of if , , , has a finite quasiconvex envelope, weakly in and for some it holds that as . In particular, we give necessary and sufficient conditions for -weak convergence of to if .
It is proved that no convex and Fréchet differentiable function on c0(w1), whose derivative is locally uniformly continuous, attains its minimum at a unique point.
The vibration problem in two variables is derived from the spatial situation (a plate as a three-dimensional body) on the basis of geometrically nonlinear plate theory (using Kármán's hypothesis) and coupled linear thermoelasticity. That leads to coupled strongly nonlinear two-dimensional equilibrium and heat conducting equations (under classical mechanical and thermal boundary conditions).
For the generalized problem with subgradient conditions on the boundary and in the domain (including also...
In this paper, we derive a general theorem concerning the quasi-variational inequality problem: find x̅ ∈ C and y̅ ∈ T(x̅) such that x̅ ∈ S(x̅) and
⟨y̅,z-x̅⟩ ≥ 0, ∀ z ∈ S(x̅),
where C,D are two closed convex subsets of a normed linear space X with dual X*, and and are multifunctions. In fact, we extend the above to an existence result proposed by Ricceri [12] for the case where the multifunction T is required only to satisfy some general assumption without any continuity. Under a kind of Karmardian’s...
The paper present an existence theorem for a strong solution to an abstract evolution inequality where the properties of the operators involved are motivated by a type of modified Navier-Stokes equations under certain unilateral boundary conditions. The method of proof rests upon a Galerkin type argument combined with the regularization of the functional.
The present paper is devoted to sufficient conditions for existence of equilibria of Lipschitz multivalued maps in prescribed subsets of finite-dimensional spaces. The main improvement of the present study lies in the fact that we do not suppose any regular assumptions on the boundary of the subset. Our approach is based on behaviour of trajectories to the corresponding differential inclusion.
The strong closure of feasible states of families of operators is studied. The results are obtained for self-adjoint operators in reflexive Banach spaces and for more concrete case - families of elliptic systems encountered in the optimal layout of materials. The results show when it is possible to parametrize the strong closure by the same type of operators. The results for systems of elliptic operators for the case when number of unknown functions is less than the dimension of the reference...
We deal with the problems of four boundary points conditions for both differential inclusions and differential equations with and without moving constraints. Using a very recent result we prove existence of generalized solutions for some differential inclusions and some differential equations with moving constraints. The results obtained improve the recent results obtained by Papageorgiou and Ibrahim-Gomaa. Also by means of a rather different approach based on an existence theorem due to O. N. Ricceri...
Equivalent conditions for the separability of the range of the subdifferential of a given convex Lipschitz function defined on a separable Banach space are studied. The conditions are in terms of a majorization of by a -smooth function, separability of the boundary for or an approximation of by Fréchet smooth convex functions.
Currently displaying 61 –
80 of
390