Displaying 881 – 900 of 2377

Showing per page

Geometric constraints on the domain for a class of minimum problems

Graziano Crasta, Annalisa Malusa (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We consider minimization problems of the form min u ϕ + W 0 1 , 1 ( Ω ) Ω [ f ( D u ( x ) ) - u ( x ) ] d x where Ω N is a bounded convex open set, and the Borel function f : N [ 0 , + ] is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of Ω and the zero level set of f , we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.

Geometric constraints on the domain for a class of minimum problems

Graziano Crasta, Annalisa Malusa (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider minimization problems of the form min u ϕ + W 0 1 , 1 ( Ω ) Ω [ f ( D u ( x ) ) - u ( x ) ] d x where Ω N is a bounded convex open set, and the Borel function f : N [ 0 , + ] is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of Ω and the zero level set of f, we prove that the viscosity solution of a related Hamilton–Jacobi equation provides a minimizer for the integral functional.

Geometric rigidity of conformal matrices

Daniel Faraco, Xiao Zhong (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We provide a geometric rigidity estimate à la Friesecke-James-Müller for conformal matrices. Namely, we replace SO ( n ) by an arbitrary compact set of conformal matrices, bounded away from 0 and invariant under SO ( n ) , and rigid motions by Möbius transformations.

Geometric structure of magnetic walls

Myriam Lecumberry (2005)

Journées Équations aux dérivées partielles

After a short introduction on micromagnetism, we will focus on a scalar micromagnetic model. The problem, which is hyperbolic, can be viewed as a problem of Hamilton-Jacobi, and, similarly to conservation laws, it admits a kinetic formulation. We will use both points of view, together with tools from geometric measure theory, to prove the rectifiability of the singular set of micromagnetic configurations.

Global existence for a Riccati equation arising in a boundary control problem for distributed parameters

Franco Flandoli (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si prova resistenza globale della soluzione di una equazione di Riccati collegata alla sintesi di un problema di controllo ottimale. Il problema considerato rappresenta la versione astratta di alcuni problemi governati da equazioni paraboliche con il controllo sulla frontiera.

Currently displaying 881 – 900 of 2377